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About This Reference

The C language documented in this reference is consistent with the one
described in Programming languages – C (ISO/IEC 9899:1990).

The C++ language documented in this reference is consistent with the one
described in Programming languages – C++ (ISO/IEC 14882:1998).

This book also contains descriptions of the IBM C language and C++
language definitions that comply with the POSIX and XPG4 standards and that are
implemented by the z/OS Language Environment.

z/OS C/C++ and Related Publications
This section lists the major publications of the z/OS C/C++ documentation. For a
task-based presentation of information across the entire documentation set, please
consult the Related Publications section in any of the following publications.

v z/OS C/C++ Programming Guide

v z/OS C/C++ User’s Guide

v z/OS C/C++ Run-Time Library Reference

v z/OS C/C++ Compiler and Run-Time Migration Guide

v z/OS C/C++ Reference Summary

Highlighting Conventions
Bold Identifies commands, keywords, files, directories, and other items

whose names are predefined by the system.

Italics Identify parameters whose actual names or values are to be
supplied by the programmer. Italics are also used for the first
mention of new terms that are defined in the glossary.

Example Identifies examples of specific data values, examples of text similar
to what you might see displayed, examples of portions of program
code, messages from the system, or information that you should
actually type.

How to Read the Syntax Diagrams
v Read the syntax diagrams from left to right, from top to bottom, following the path

of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued
from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Diagrams of syntactical units other than complete commands, directives, or
statements start with the �─── symbol and end with the ───� symbol.

Note: In the following diagrams, statement represents a C or C++ command,
directive, or statement.
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v Required items appear on the horizontal line (the main path).

�� statement required_item ��

v Optional items appear below the main path.

�� statement
optional_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

�� statement required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� statement
optional_choice1
optional_choice2

��

The item that is the default appears above the main path.

�� statement
default_item
alternate_item ��

v An arrow returning to the left above the main line indicates an item that can be
repeated.

�� statement � repeatable_item ��

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

v Keywords appear in nonitalic letters and should be entered exactly as shown (for
example, extern).

Variables appear in italicized lowercase letters (for example, identifier). They
represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols
are shown, you must enter them as part of the syntax.

The following syntax diagram example shows the syntax for the #pragma
comment directive. See “Pragma Directives (#pragma)” on page 219 for information
on the #pragma directive.

Reading the Syntax Diagrams
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�1� This is the start of the syntax diagram.

�2� The symbol # must appear first.

�3� The keyword pragma must appear following the # symbol.

�4� The name of the pragma comment must appear following the keyword
pragma.

�5� An opening parenthesis must be present.

�6� The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

�7� A comma must appear between the comment type copyright or user, and
an optional character string.

�8� A character string must follow the comma. The character string must be
enclosed in double quotation marks.

�9� A closing parenthesis is required.

�10� This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

A Note About Examples
The examples that illustrate the use of the C/C++ compiler use a simple style. They
are instructional examples, and do not attempt to minimize run time, conserve
storage, or check for errors. The examples do not demonstrate all of the uses of
C/C++ language constructs. Some examples are only code fragments, and will not
compile without additional code.

Many of the larger examples in this book are available in machine-readable form. A
label on an example indicates that the example is distributed in softcopy. The label
is the name of a member of the data sets CBC.SCCNSAM or the directory
/usr/lpp/ioclib/sample. The labels have the form CCNxyyy or CLBxyyy, where x
refers to a publication:
v R and X refer to C/C++ Language Reference, SC09-4815
v G refers to z/OS C/C++ Programming Guide, SC09-4765
v U refers to z/OS C/C++ User’s Guide, SC09-4767
v A refers to IBM Open Class Library User’s Guide, SC09-2363

Examples labeled as CCNxyyy appear in C/C++ Language Reference, z/OS C/C++
Programming Guide, and z/OS C/C++ User’s Guide.

�1� �2� �3� �4� �5� �6� �9� �10�
��─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─��

│ │
├─────date────────────────────────────┤
│ │
├─────timestamp───────────────────────┤
│ │
└──┬──copyright──┬──┬─────────────────┤

│ │ │ │
└──user───────┘ └──,─"characters"─┘

�7� �8�
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z/OS C/C++: A Platform-Specific Summary

The C/C++ feature of the IBM® z/OS licensed program provides support for C and
C++ application development and deployment on the z/OS platform. z/OS V1R2
C/C++ is the latest in a family of IBM C and C++ compilers for IBM mainframes,
which began in 1988 with C/370™ V1R1. z/OS V1R2 C/C++ is a follow-on to
OS/390® V2R10 C/C++, and contains ISO C++ language support, which is
compatible with VisualAge® C++ Professional for AIX, Version 5.0.

z/OS C/C++ includes:
v A C compiler (referred to as the z/OS C compiler)
v A C++ compiler (referred to as the z/OS C++ compiler)
v Support for a set of C++ class libraries that are available with the base z/OS

operating system
v Application Support Class and Collection Class Library source
v A mainframe interactive Debug Tool (optional)
v Performance Analyzer host component, which supports the C/C++ Productivity

Tools for z/OS product
v A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX®, OS/400®,
VM/ESA®, and VSE/ESA™ operating systems. The AIX and OS/400 operating
systems also offer the C++ language.

z/OS Language Environment Downward Compatibility
z/OS Language Environment® provides downward compatibility support. Assuming
that you have met the required programming guidelines and restrictions, described
in z/OS Language Environment Programming Guide, this support enables you to
develop applications on higher release levels of z/OS for use on platforms that are
running lower release levels of z/OS or OS/390. In C and C++, downward
compatibility support is provided through the C/C++ TARGET compiler option. See
z/OS C/C++ User’s Guide for details on this compiler option.

For example, a company may use z/OS V1R2 with Language Environment on a
development system where applications are coded, link-edited, and tested, while
using any supported lower release of OS/390 or z/OS Language Environment on
their production systems where the finished application modules are used.

Downward compatibility support is not the roll-back of new function to prior releases
of the operating system. Applications developed that exploit the downward
compatibility support must not use any Language Environment function that is
unavailable on the lower release of OS/390 or z/OS where the application will be
used.

The downward compatibility support includes toleration PTFs for lower releases of
OS/390 or z/OS to assist in diagnosing applications that do not meet the
programming requirements for this support. (Specific PTF numbers can be found in
the PSP buckets.)

The downward compatibility support provided by z/OS Language Environment and
by the toleration PTFs does not change Language Environment’s upward
compatibility. That is, applications coded and link-edited with one release of OS/390
or z/OS Language Environment will continue to run on later releases of OS/390 or
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z/OS Language Environment without the need to recompile or re-link edit the
application, independent of the downward compatibility support.

Downward compatibility is supported in earlier releases of OS/390 C/C++ (from
Version 2 Release 6), but in OS/390 V2R6, the user is required to copy header files
and link-edit syslib data sets from the deployment release of OS/390. Starting with
OS/390 Version 2 Release 10, the current level header files and syslib can be used
(the user no longer has to copy header files and syslib data sets from the
deployment release).

The z/OS C/C++ Compilers
The following sections describe the C and C++ languages and the z/OS C/C++
compilers.

The C Language
The C language is a general purpose, versatile, and functional programming
language that allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language
The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

Common Features of the z/OS C and C++ Compilers
The C and C++ compilers, when used with z/OS Language Environment, offer
many features to help your work:

v Optimization support:

– Algorithms to take advantage of the S/390® architecture to get better
optimization for speed and use of computer resources through the OPTIMIZE
and IPA compiler options.

– The OPTIMIZE compiler option, which instructs the compiler to optimize the
machine instructions it generates to produce faster- running object code to
improve application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

v DLLs (dynamic link libraries) to share parts among applications or parts of
applications, and dynamically link to exported variables and functions at run time.

DLLs allow a function reference or a variable reference in one executable to use
a definition located in another executable at run time. You can use both
load-on-reference and load-on-demand DLLs. When your program refers to a
function or variable which resides in a DLL, z/OS C/C++ generates code to load

xviii C/C++ Language Reference

|
|

|
|
|
|
|
|

|
|

|
|
|



the DLL and access the functions and variables within it. This is called
load-on-reference. Alternatively, your program can use z/OS C library functions to
load a DLL and look up the address of functions and variables within it. This is
called load-on-demand. Your application code explicitly controls load-on-demand
DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system
memory usage. DLLs also offer more flexibility for building, packaging, and
redistributing applications.

v Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. z/OS C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with z/OS or the z/OS Language
Environment Prelinker (prelinker) and program management binder. The z/OS
C++ compiler always ensures that C++ programs are reentrant.

v Inline compiler option.

Additional optimization capabilities are available with the INLINE compiler option.

v Locale-based internationalization support derived from IEEE POSIX 1003.2-1992
standard. Also derived from X/Open CAE Specification, System Interface
Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to use
locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,
PL/1, compiled Java™, and Fortran, to enable programmers to integrate z/OS
C/C++ code with existing applications.

v Exploitation of z/OS and z/OS UNIX technology.

z/OS UNIX is an IBM implementation of the open operating system environment,
as defined in the XPG4 and POSIX standards.

v Support for the following standards at the system level:

– A subset of the extended multibyte and wide character functions as defined by
Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the z/Series environment.

– X/Open CAE Specification, Network Services, Issue 4

v Year 2000 support

v Support for the Euro currency.
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z/OS C Compiler Specific Features
In addition to the features common to z/OS C and C++, the z/OS C compiler
provides you with the following capabilities:

v The ability to write portable code that supports the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Language Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use z/OS C in place of
assembler

v Extensions of the standard definitions of the C language to provide programmers
with support for the z/OS environment, such as fixed-point (packed) decimal data
support

z/OS C++ Compiler Specific Features
In addition to the features common to z/OS C and C++, the z/OS C++ compiler
supports the International Standard for the C++ Programming Language (ISO/IEC
14882-1998) specification.

Class Libraries
z/OS V1R2 C/C++ provides the following class libraries, which are all thread-safe:

v C++ Standard Library, including the Standard Template Library (STL) and other
library features of ISO C++ 1998

v IBM Open Class® Library for z/OS V1R2

v IBM Open Class Library for OS/390 V2R10

Refer to z/OS C/C++ Compiler and Run-Time Migration Guide and IBM Open Class
Library User’s Guide for more details on the components of these libraries.

For new code and the most portable code you will want to use the new C++
Standard Library, which includes the following:

v The C++ Standard I/O Stream Library for performing input and output (I/O)
operations

v The C++ Standard Complex Mathematics Library for manipulating complex
numbers

v The Standard Template Library (STL), which is composed of C++ template-based
algorithms, container classes, iterators, localization objects, and the string class

The IBM Open Class (IOC) is a comprehensive library of C++ classes that you can
use to develop applications. z/OS V1R2 includes a new level of IOC that is
consistent with that which shipped in VisualAge C++ for AIX V5.0. This is intended
to ease porting from AIX, but is not intended for use in new development. Support
will be withdrawn in a future release.

The z/OS V1R2 IBM Open Class Library includes:

v The Application Support Class Library, which provides the basic abstractions that
are needed during the creation of most C++ applications, including String, Date,
Time, and Decimal. The Application Support Class Library corresponds to the
IOC member in the data sets.

v The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. The Collection Class
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Library provides developers with a consistent set of building blocks from which
they can derive application objects. The library design exploits features of the
C++ language such as exception handling and template support. The Collection
Class Library corresponds to the COLL member in the data sets.

The z/OS V1R2 IBM Open Class enables you to choose between the C++ Standard
I/O Stream and Complex Mathematics libraries, and the UNIX Systems Laboratories
C++ Language System Release (USL) I/O Stream and Complex Mathematics
libraries.

The OS/390 V2R10 IBM Open Class Library and USL libraries include the following:

v The USL I/O Stream Class Library (corresponds to the IOSTREAM member in
the data sets)

v The USL Complex Mathematics Class Library (corresponds to the COMPLEX
member in the data sets)

v The Application Support Class Library (corresponds to the APPSUPP member in
the data sets)

v The Collection Class Library (corresponds to the COLLECT member in the data
sets)

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the z/OS C/C++ compiler
features or to use the DLL Rename Utility.

IBM Open Class Library Source
The IBM Open Class Library Source consists of the following:

v Application Support Class Library source code

v Collection Class Library source code

Utilities
The z/OS C/C++ compilers provide the following utilities:

v The CXXFILT utility to map z/OS C++ mangled names to the original source.

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into
z/OS C/C++ data structures.

v The localedef utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use.

v The makedepend utility to derive all dependencies in the source code and write
these into the makefile for the make command to determine which source files to
recompile, whenever a dependency has changed. This frees the user from
manually monitoring such changes in the source code.

z/OS Language Environment provides the following utilities:

v The Object Library Utility (C370LIB) to update partitioned data set (PDS and
PDS/E) libraries of object modules and Interprocedural Analysis (IPA) object
modules.

v The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged. The DLL Rename Utility does not
support XPLINK.
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v The prelinker which combines object modules that comprise an z/OS C/C++
application, to produce a single object module. The prelinker supports only object
and extended object format input files, and does not support GOFF.

The Debug Tool
z/OS C/C++ supports program development by using the Debug Tool. This
optionally available tool allows you to debug applications in their native host
environment, such as CICS/ESA®, IMS/ESA®, DB2®, and so on. The Debug Tool
provides the following support and function:
v Step mode
v Breakpoints
v Monitor
v Frequency analysis
v Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

Note: You can also use the dbx shell command to debug programs, as described in
z/OS UNIX System Services Command Reference, SA22-7802.

For further information, see “IBM C/C++ Productivity Tools for z/OS”.

IBM C/C++ Productivity Tools for z/OS
With the IBM C/C++ Productivity Tools for OS/390 product, you can expand your
z/OS application development environment out to the workstation, while remaining
close to your familiar host environment. IBM C/C++ Productivity Tools for OS/390
includes the following workstation-based tools to increase your productivity and
code quality:

v A Performance Analyzer to help you analyze, understand, and tune your C and
C++ applications for improved performance

v A Distributed Debugger that allows you to debug C or C++ programs from the
convenience of the workstation

v A workstation-based editor to improve the productivity of your C and C++ source
entry

v Advanced online help, with full text search and hypertext topics as well as
printable, viewable, and searchable Portable Document Format (PDF) documents

In addition, IBM C/C++ Productivity Tools for OS/390 includes the following host
components:

v Debug Tool

v Host Performance Analyzer

Use the Performance Analyzer on your workstation to graphically display and
analyze a profile of the execution of your host z/OS C or C++ application. Use this
information to time and tune your code so that you can increase the performance of
your application.
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Use the Distributed Debugger to debug your z/OS C or C++ application remotely
from your workstation. Set a break point with the simple click of the mouse. Use the
windowing capabilities of your workstation to view multiple segments of your source
and your storage, while monitoring a variable at the same time.

Use the workstation-based editor to quickly develop C and C++ application code
that runs on z/OS. Context-sensitive help information is available to you when you
need it.

References to Performance Analyzer in this document refer to the IBM Performance
Analyzer included in the IBM C/C++ Productivity Tools for OS/390 product.

z/OS Language Environment
z/OS C/C++ exploits the C/C++ run-time environment and library of run-time
services available with z/OS Language Environment (formerly OS/390 Language
Environment, Language Environment for MVS™ & VM, Language Environment/370
and LE/370).

z/OS Language Environment consists of four language-specific run-time libraries,
and Base Routines and Common Services, as shown below. z/OS Language
Environment establishes a common run-time environment and common run-time
services for language products, user programs, and other products.

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The z/OS Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. z/OS C/C++ contains
these functions within a library of callable routines, and includes interfaces to
operating system functions and a variety of other commonly used functions.

v Run-time options that help in the execution, performance, and diagnosis of your
application.

v Access to operating system services. z/OS UNIX services are available to an
application programmer or program through the z/OS C/C++ language bindings.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in z/OS Language Environment
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v Access to language-specific library routines, such as the z/OS C/C++ library
functions.

The Program Management Binder
The binder provided with z/OS combines the object modules, load modules, and
program objects comprising an application. It produces a single z/OS output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL, or IPA
compiler options, you must use the prelinker. C and C++ code compiled with the
GOFF or XPLINK compiler options cannot be processed by the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the
IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:
– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, which enables full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

Using the binder without using the prelinker has the following disadvantage:

v Long name maximum symbol length:
– Long names currently processed by the binder are limited to 1024 characters.

The prelinker supports up to (32 K - 1) characters. IBM intends to bring the
binder limit in line with the prelinker in a future release.

The prelinker provided with z/OS Language Environment combines the object
modules that make up a z/OS C/C++ application and produces a single object
module. You can link-edit the object module into a load module, which is stored in a
PDS, or bind it into a load module or a program object that is stored in a PDS,
PDSE, or HFS file.

Note: For further information on the binder, refer to the DFSMS home page at
http://www.ibm.com/storage/software/sms/smshome.htm.

z/OS UNIX System Services (z/OS UNIX)
z/OS UNIX provides capabilities under z/OS to make it easier to implement or port
applications in an open, distributed environment. z/OS UNIX Services are available
to z/OS C/C++ application programs through the C/C++ language bindings available
with z/OS Language Environment.

Together, the z/OS UNIX System Services, z/OS Language Environment, and z/OS
C/C++ compilers provide an application programming interface that supports
industry standards.

z/OS UNIX provides support for both existing z/OS applications and new z/OS
UNIX applications through the following:
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v C programming language support as defined by ISO C

v C++ programming language support as defined by ISO C++

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:
System Interfaces and Headers, Issue 4, Version 2, which provides standard
interfaces for better source code portability with other conforming systems; and
X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open
UNIX® descriptions of sockets and X/Open Transport Interface (XTI)

v z/OS UNIX Extensions that provide z/OS–specific support beyond the defined
standards

v The z/OS UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– A shell, tcsh, which is based on the C shell csh

– Tools and utilities that support the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
z/OS support. The following is a partial list of utilities that are included:

ar Creates and maintains library archives

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or z/OS C/C++ executable files in HFS files from a
shell session

c89 Compiles, assembles, and binds z/OS UNIX C/C++ and
assembler applications

dbx Provides an environment to debug and run programs

gencat Merges the message text source files message file (usually
*.msg) into a formatted message catalog file (usually *.cat)

iconv Converts characters from one code set to another

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

localedef Creates a compiled locale object

make Helps you manage projects that contain a set of
interdependent files, such as a program with many z/OS
source and object files, by keeping all such files up to date
with one another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds z/OS UNIX C++ applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

v The z/OS UNIX Debugger feature, which provides the dbx interactive symbolic
debugger for z/OS UNIX applications
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v Access to a hierarchical file system (HFS), with support for the POSIX.1 and
XPG4 standards

v z/OS C/C++ I/O routines, which support using HFS files, standard z/OS data
sets, or a mixture of both

v Application threads (with support for a subset of POSIX.4a)

v Support for z/OS C/C++ DLLs

z/OS UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
z/OS UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the z/OS UNIX environment can enhance your productivity. Refer to
z/OS UNIX System Services User’s Guide for more information on the Shell and
Utilities.

z/OS C/C++ Applications with z/OS UNIX C/C++ Functions
All z/OS UNIX C functions are available at all times. In some situations, you must
specify the POSIX(ON) run-time option. This is required for the POSIX.4a threading
functions and the system() and signal handling functions, where the behavior is
different between POSIX/XPG4 and ISO. Refer to z/OS C/C++ Run-Time Library
Reference for more information about requirements for each function.

You can invoke a z/OS C/C++ program that uses z/OS UNIX C functions by using
the following methods:

v Directly from a shell.

v From another program, or from a shell, using one of the exec family of functions,
or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) run-time
option.

Input and Output
The C/C++ run-time library that supports the z/OS C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/O Stream Class Library provides additional support.

I/O Interfaces
The C/C++ run-time library supports the following I/O interfaces:

C Stream I/O
This is the default and the ISO-defined I/O method. This method processes
all input and output by character.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is a z/OS C/C++ extension to the ISO standard.

TCP/IP Sockets I/O
z/OS UNIX provides support for an enhanced version of an
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industry-accepted protocol for client/server communication that is known as
sockets. A set of C language functions provides support for z/OS UNIX
sockets. z/OS UNIX sockets correspond closely to those used by UNIX
applications that conform to the Berkeley Software Distribution (BSD) 4.3
standard (also known as OE sockets). The slightly different interface of the
X/Open CAE Specification, Networking Services, Issue 4, is supplied as an
additional alternative. This interface is known as X/Open Sockets.

The z/OS UNIX socket application program interface (API) provides support
for both UNIX domain sockets and Internet domain sockets. UNIX domain
sockets, or local sockets, allow interprocess communication within z/OS
independent of TCP/IP. Local sockets behave like traditional UNIX sockets
and allow processes to communicate with one another on a single system.
With Internet sockets, application programs can communicate with others in
the network using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output for
your own data types. This helps improve the maintainability of programs that use
input and output.

File Types
In addition to conventional files such as sequential files and partitioned data sets,
the C/C++ run-time library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
z/OS C/C++ has native support for three types of VSAM data organization:

v Key-sequenced data sets (KSDS). Use KSDS to access a record through
a key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

v Entry-sequenced data sets (ESDS). Use ESDS to access data in the
order it was created (or in the reverse order).

v Relative-record data sets (RRDS). Use RRDS for data in which each
item has a particular number (for example, a telephone system with a
record associated with each number).

For more information on how to perform I/O operations on these VSAM file
types, see the z/OS C/C++ Programming Guide.

Hierarchical File System Files
z/OS C/C++ recognizes Hierarchical File System (HFS) file names. The
name specified on the fopen() or freopen() call must conform to certain
rules. You can create regular HFS files, special character HFS files, or FIFO
HFS files. You can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than to
devices. Since memory files reside in main storage and exist only while the
program is executing, you use them primarily as work files. You can access
memory files across load modules through calls to non-POSIX system()
and C fetch(); they exist for the life of the root program. Standard streams
can be redirected to memory files on a non-POSIX system() call using
command line redirection.

Hiperspace™ Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
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storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte equals 230 bytes).

Additional I/O Features
z/OS C/C++ provides additional I/O support through the following features:

v Large file support, which allows I/O to and from data files larger than 2 gigabytes

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the
DFSMS/MVS® support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

v Full support of PDSEs on z/OS, including support for multiple members opened
for write

v Overlapped I/O support under z/OS (NCP, BUFNO)

v Multibyte character I/O functions

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD
or tape

v Support for Generation Data Group I/O

The System Programming C Facility
The System Programming C (SPC) facility allows you to build applications that
require no dynamic loading of z/OS Language Environment libraries. It also allows
you to tailor your application to better utilize the low-level services that are available
on your operating system. SPC offers a number of advantages:

v You can develop applications that you can execute in a customized environment
rather than with z/OS Language Environment services. Note that if you do not
use z/OS Language Environment services, only some built-in functions and a
limited set of C/C++ run-time library functions will be available to you.

v You can substitute the z/OS C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SPC.

v SPC lets you develop applications featuring a user-controlled environment, in
which an z/OS C environment is created once and used repeatedly for C function
execution from other languages.

v You can utilize co-routines by using a two-stack model to write application service
routines. In this model, the application calls on the service routine to perform
services independently of the user. The application is then suspended when
control is returned to the user application.

Interaction with Other IBM Products
When you use z/OS C/C++, you can write programs that utilize the power of other
IBM products and subsystems:

v Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.
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Note: You cannot compile CSP applications with the z/OS C++ compiler.
However, your z/OS C++ program can use interlanguage calls (ILC) to call
z/OS C programs that access CSP.

v Customer Information Control System (CICS®)

You can use the CICS/ESA Command-Level Interface to write C/C++ application
programs. The CICS Command-Level Interface provides data, job, and task
management facilities that are normally provided by the operating system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for z/OS C++ applications. z/OS C++ code preprocessed on
CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

v DB2 Universal Database™ (UDB) for z/OS

DB2 programs manage data that is stored in relational databases. You can
access the data by using a structured set of queries that are written in Structured
Query Language (SQL).

The DB2 program uses SQL statements that are embedded in the program. The
SQL translator (DB2 preprocessor) translates the embedded SQL into host
language statements that perform the requested functions. The z/OS C/C++
compilers compile the output of the SQL translator. The DB2 program processes
a request, and processing returns to the application.

v Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your C or C++ program to manipulate temporary data objects that are known as
TEMPSPACE and VSAM linear data sets.

v Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture (IMS/ESA)
product provides support for hierarchical databases.

v Interactive System Productivity Facility (ISPF)

z/OS C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a
person and a computer. The dialog interface contains display, variable, message,
and dialog services as well as other facilities that are used to write interactive
applications.

v Graphical Data Display Manager (GDDM)

GDDM® provides a comprehensive set of functions to display and print
applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts, including support for double-byte character set (DBCS)

– Business image support

– Saving and restoring graphic pictures

– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)

z/OS C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable interface.
You can create applications to perform a variety of tasks, such as data entry,
query building, administration aids, and report analysis.

v z/OS Java Support
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The Java language supports the Java Native Interface (JNI) for making calls to
and from C/C++. These calls do not use ILC support but rather the Java defined
interface JNI. Java code, which has been compiled using the High Performance
Compiler for Java (HPCJ), will support the JNI interface. There is no distinction
between compiled Java and interpretted Java as far as calls to C or C++.

Additional Features of z/OS C/C++

Feature Description

long long Data Type The z/OS C/C++ compiler supports long long as a native data type when the compiler
option LANGLVL(LONGLONG) is turned on. This option is turned on by default by the
compiler option LANGLVL(EXTENDED).

Multibyte Character Support z/OS C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by z/OS C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

z/OS C/C++ provides three z/Series floating-point number data types: single precision
(32 bits), declared as float; double precision (64 bits), declared as double; and
extended precision (128 bits), declared as long double.

Extended precision floating- point numbers give greater accuracy to mathematical
calculations.

As of Release 6, z/OS C/C++ also supports IEEE 754 floating-point representation. By
default, float, double, and long double values are represented in IBM z/Series floating
point format. However, the IEEE 754 floating-point representation is used if you specify
the FLOAT(IEEE754) compiler option. For details on this support, see the description of
the FLOAT option in z/OS C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support z/OS C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support z/OS C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The z/OS C/C++ compiler can compile C/C++ source written in different EBCDIC code
pages. In addition, the iconv utility converts data or source from one code page to
another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multithreading Threads are efficient in applications that allow them to take advantage of any
underlying parallelism available in the host environment. This underlying parallelism in
the host can be exploited either by forking a process and creating a new address
space, or by using multiple threads within a single process. For more information, refer
to z/OS C/C++ Programming Guide.
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Feature Description

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks at
the same time. z/OS C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of z/OS to allow a single z/OS C application program to use
more than one processor of a multiprocessing system simultaneously.
Note: XPLINK is not supported in an MTF environment. You can also use threads to
perform multitasking with or without XPLINK, as described in z/OS C/C++ Programming
Guide.

Packed Structures and
Unions

z/OS C provides support for packed structures and unions. Structures and unions may
be packed to reduce the storage requirements of an z/OS C program or to define
structures that are laid out according to COBOL or PL/I structure layout rules.

Fixed-Point (Packed)
Decimal Data

z/OS C supports fixed-point (packed) decimal as a native data type for use in business
applications. The packed data type is similar to the COBOL data type COMP-3 or the PL/I
data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

Large File Support Enables you to use hierarchical file system (HFS) files that are larger than 2 gigabytes.

System Calls You can call commands or executable modules using the system() function under
z/OS, z/OS UNIX, and TSO. You can also use the system() function to call EXECs on
z/OS and TSO, or Shell scripts using z/OS UNIX.

Exploitation of ESA Support for z/OS, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows you
to exploit the features of the ESA.

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(2) instructs the compiler to generate
faster instruction sequences available only on newer machines. ARCH(3) also generates
these faster instruction sequences and enables support for IEEE 754 Binary
Floating-Point instructions. Code compiled with ARCH(2) runs on a G2, G3, G4, and
2003 processor and code compiled with ARCH(3) runs on a G5 or G6 processor, and
follow-on models.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. TUNE impacts performance only; it does not impact the processor model on
which you will be able to run your application. TUNE(3) optimizes your application for the
newer G4, G5, and G6 processors. TUNE(2) optimizes your application for other
architectures. For information on which machines and architectures support the above
options, refer to the ARCHITECTURE and TUNE compiler information in z/OS C/C++ User’s
Guide.

Built-in Functions Use built-in functions to utilize specific hardware instructions that are otherwise
inaccessible to C/C++ programs. For information on using built-in functions, see the
appendix on built-in functions in z/OS C/C++ User’s Guide.

Related Publications
The following titles are related to the z/OS C/C++ product.

v z/OS C/C++ Programming Guide, SC09-4765

v z/OS C/C++ User’s Guide, SC09-4767

v z/OS C/C++ Run-Time Library Reference, SA22-7821

v z/OS C Curses, SA22-7820

v z/OS C/C++ Compiler and Run-Time Migration Guide, GC09-4913
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v z/OS C/C++ Messages Guide, GC09-4819

v IBM Open Class Library User’s Guide, SC09-4811

v IBM Open Class Library Reference, SC09-4812

v Debug Tool User’s Guide and Reference, SC09-2137

Softcopy Books
All of the z/OS C/C++ publications are supplied in PDF format. They are also
available at the following Web Site:
http://www.ibm.com/software/ad/c390/czos/czosdocs.html

To read a PDF file, use the Adobe Acrobat Reader, which can be downloaded for
free from the Adobe Web Site:
http://www.adobe.com

z/OS C/C++ on the World Wide Web
Additional information on z/OS C/C++ is available on the World Wide Web on the
z/OS C/C++ home page at:
http://www.ibm.com/software/ad/c390/czos

This page contains late-breaking information about the z/OS C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the z/OS C/C++ information library and the libraries of other z/OS elements
that are available on the Web. The z/OS C/C++ home page also contains samples
that you can download, and links to other related Web sites.
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Chapter 1. Scope and Linkage

Scope is the mechanism by which it is possible to limit the visibility of declarations
in a program. Broadly speaking, it is the general context that differentiates
meanings of entity names.

Scope
The area of the code where an identifier is visible is referred to as the scope of the
identifier. The following are the kinds of scopes:
v Local
v Function
v Function prototype

v Global or Global namespace

v Namespace

v Class

The scope of a name is determined by the location of the name’s declaration.

In all declarations the identifier is in scope before the initializer. The following
example demonstrates this:
int x;
void f() {

int x = x;
}

The x declared in function f() has local scope, not global namespace scope.

A function name that is first declared as a friend of a class is in the
innermost nonclass scope that encloses the class. If the friend function is a member
of another class, it has the scope of that class. The scope of a class name first
declared as a friend of a class is the first nonclass enclosing scope.

The implicit declaration of the class is not visible until another declaration of
that same class is seen.

v “Local Scope”
v “Function Scope” on page 2
v “Function Prototype Scope” on page 2
v “Global Scope” on page 2
v “Chapter 10. Namespaces” on page 261
v “Class Scope” on page 3

Local Scope
A name has local scope or block scope if it is declared in a block. A name with local
scope can be used in that block and in blocks enclosed within that block, but the
name must be declared before it is used. When the block is exited, the names
declared in the block are no longer available.
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Parameter names for a function have the scope of the outermost block of that
function. Also if the function is declared and not defined, these parameter names
have function prototype scope.

If a local variable is a class object with a destructor, the destructor is called
when control passes out of the block in which the class object was constructed.

When one block is nested inside another, the variables from the outer block are
usually visible in the nested block. However, if the declaration of a variable in a
nested block has the same name as a variable that is declared in an enclosing
block, the declaration in the nested block hides the variable that was declared in the
enclosing block. The original declaration is restored when program control returns to
the outer block. This is called block visibility.

v “Block Statement” on page 179
v “Function Prototype Scope”
v “Destructors” on page 350

Function Scope
The only type of identifier with function scope is a label name. A label is implicitly
declared by its appearance in the program text and is visible throughout the
function that declares it.

A label can be used in a goto statement before the actual label is seen.

v “Labels” on page 177

Function Prototype Scope
In a function declaration (also called a function prototype) or in any function
declarator — except the declarator of a function definition — parameter names
have function prototype scope. Function prototype scope terminates at the end of
the nearest enclosing function declarator.

v “Function Declarations” on page 154

Global Scope
A name has global scope if the identifier’s declaration appears outside of

any block. A name with global scope and internal linkage is visible from the point
where it is declared to the end of the translation unit. (A translation unit is a source
code file after preprocessing with include files.)

A name has global namespace scope if the identifier’s declaration appears
outside of all blocks and classes. A name with global namespace scope and internal
linkage is visible from the point where it is declared to the end of the translation
unit.

Scope
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A name with global (namespace) scope is also accessible for the initialization of
global variables. If that name is declared extern, it is also visible at link time in all
object files being linked.

v “Chapter 10. Namespaces” on page 261
v “Internal Linkage” on page 5
v “extern Storage Class Specifier” on page 37

Class Scope

A name declared within a member function hides a declaration of the same
name whose scope extends to or past the end of the member function’s class.

The scope of a declaration that extends to or past the end of a class definition also
extends to the regions defined by its member definitions and any portion of the
declarator part of such definitions which follows the identifier.

The name of a class member has class scope and can only be used in the
following cases:
v In a member function of that class
v In a member function of a class derived from that class
v After the . (dot) operator applied to an instance of that class
v After the . (dot) operator applied to an instance of a class derived from that

class, as long as the derived class does not hide the name
v After the -> (arrow) operator applied to a pointer to an instance of that class
v After the -> (arrow) operator applied to a pointer to an instance of a class

derived from that class, as long as the derived class does not hide the name
v After the :: (scope resolution) operator applied to the name of a class
v After the :: (scope resolution) operator applied to a class derived from that class.

v “Chapter 12. Classes” on page 283
v “Member Functions” on page 295
v “Derivation” on page 317
v “Dot Operator .” on page 107
v “Arrow Operator −>” on page 107
v “C++ Scope Resolution Operator ::” on page 102
v “Scope of Class Names” on page 287

Example of Scope in C
The following example declares the variable x on line 1, which is different from the
x it declares on line 2. The declared variable on line 2 has function prototype scope
and is visible only up to the closing parenthesis of the prototype declaration. The
variable x declared on line 1 resumes visibility after the end of the prototype
declaration.
1 int x = 4; /* variable x defined with file scope */
2 long myfunc(int x, long y); /* variable x has function */
3 /* prototype scope */
4 int main(void)
5 {
6 /* . . . */
7 }

Scope
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The following program illustrates blocks, nesting, and scope. The example shows
two kinds of scope: file and block. The main() function prints the values 1, 2, 3,
0, 3, 2, 1 on separate lines. Each instance of i represents a different variable.

Name Hiding

If a class name or enumeration name is in scope and not hidden it is
visible. A class name or enumeration name can be hidden by an explicit declaration
of that same name — as an object, function, or enumerator — in a nested
declarative region or derived class. The class name or enumeration name is hidden
wherever the object, function, or enumerator name is visible. This process is
referred to as name hiding.

In a member function definition, the declaration of a local name hides the
declaration of a member of the class with the same name. The declaration of a
member in a derived class hides the declaration of a member of a base class of the
same name.

Suppose a name x is a member of namespace A, and suppose that the members of
namespace A are visible in a namespace B because of a using declaration. A
declaration of an object named x in namespace B will hide A::x. The following
example demonstrates this:
#include <iostream>
#include <typeinfo>
using namespace std;

namespace A {
char x;

};

namespace B {
using namespace A;
int x;

#include <stdio.h>
int i = 1; /* i defined at file scope */

int main(int argc, char * argv[])
┌───── {
¹
¹ printf("%d\n", i); /* Prints 1 */
¹
¹ ┌─── {
¹ ² int i = 2, j = 3; /* i and j defined at
¹ ² block scope */
¹ ² printf("%d\n%d\n", i, j); /* Prints 2, 3 */
¹ ²
¹ ² ┌── {
¹ ² ³ int i = 0; /* i is redefined in a nested block */
¹ ² ³ /* previous definitions of i are hidden */
¹ ² ³ printf("%d\n%d\n", i, j); /* Prints 0, 3 */
¹ ² └── }
¹ ²
¹ ² printf("%d\n", i); /* Prints 2 */
¹ ²
¹ └─── }
¹
¹ printf("%d\n", i); /* Prints 1 */
¹
¹ return 0;
¹
└────── }

Scope
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};

int main() {
cout << typeid(B::x).name() << endl;

}

The following is the output of the above example:
int

The declaration of the integer x in namespace B hides the character x introduced by
the using declaration.

v “Chapter 12. Classes” on page 283
v “Member Functions” on page 295
v “Member Scope” on page 297
v “Chapter 10. Namespaces” on page 261
v “Using Directive” on page 266

Program Linkage
Linkage determines whether identifiers that have identical names refer to the same
object, function, or other entity, even if those identifiers appear in different
translation units. (A translation unit is a source code file after preprocessing with
include files.) The linkage of an identifier depends on how it was declared. There
are three kinds of linkage:
v If an identifier x has internal linkage, every appearance of x within one translation

unit refers to the same entity.
v If an identifier x has external linkage, every appearance of x across any

translation unit (of the same program) refers to the same entity.
v If an identifier x has internal linkage, every appearance of x refers to a unique

entity.

v “Internal Linkage”
v “External Linkage” on page 6
v “No Linkage” on page 7

Internal Linkage
The following kinds of identifiers have internal linkage:

v Objects, references, functions or function templates explicitly declared
static.

v Objects or references declared in namespace scope (or global scope in C) with
the specifier const and neither explicitly declared extern, nor previously declared
to have external linkage.

v Data members of a anonymous union.

v Identifiers declared in the unnamed namespace.

A function declared inside a block will usually have external linkage. An object
declared inside a block will usually have external linkage if it is specified extern. If a
variable that has static storage is defined outside a function, the variable has
internal linkage and is available from the point where it is defined to the end of the
current translation unit.

Scope
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A class that has no static members or noninline member functions, and that has not
been used in the declaration of an object or function or class is local to its
compilation unit.

If the declaration of an identifier has the keyword extern and if a previous
declaration of the identifier is visible at namespace or global scope, the identifier
has the same linkage as the first declaration.

v “static Storage Class Specifier” on page 42
v “volatile and const Qualifiers” on page 69
v “extern Storage Class Specifier” on page 37
v “Global Scope” on page 2
v “Anonymous Unions” on page 62
v “Unnamed Namespaces” on page 264

External Linkage
The following kinds of identifiers with namespace scope (or global scope in C) have
external linkage:
v An object, reference, or function unless it has internal linkage.

v A named class or enumeration.
v An enumerator of an enumeration that has external linkage.
v A template, unless it is a function template with internal linkage
v A namespace, unless it is declared in an unnamed namespace

The following also have external linkage:
v Member functions, static data members, classes, or enumerations if the class

that they belong to has external linkage.

v Identifiers with namespace scope or local scope that have the keyword
extern in their declarations.

v Static class members and noninline member functions

If a previous declaration of an object or function is visible in an enclosing scope, the
identifier has the same linkage as the first declaration. For example, a variable or
function that is first declared with the keyword static and later declared with the
keyword extern has internal linkage. However, a variable or function that has no
linkage and later declared with a linkage specifier will have the linkage you have
specified.

v “Scope” on page 1
v “static Storage Class Specifier” on page 42
v “extern Storage Class Specifier” on page 37
v “Chapter 12. Classes” on page 283
v “Enumerations” on page 65
v “typedef” on page 43
v “Chapter 10. Namespaces” on page 261
v “Static Members” on page 303
v “Inline Functions” on page 174

Program Linkage
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No Linkage
The following kinds of identifiers have no linkage:
v Names that have neither external or internal linkage
v Names declared in local scopes (with exceptions like certain entities declared

with the extern keyword)
v Identifiers that do not represent an object or a function, including labels,

enumerators, typedef names that refer to entities with no linkage, type names,
function parameters, and template names

You cannot use a name with no linkage to declare an entity with linkage. For
example, you cannot use the name of a class or enumeration or a typedef name
referring to an entity with no linkage to declare an entity with linkage. The following
example demonstrates this:
int main() {

struct A { };
// extern A a1;

typedef A myA;
// extern myA a2;
}

The compiler will not allow the declaration of a1 with external linkage. Class A has
no linkage. The compiler will not allow the declaration of a2 with external linkage.
The typedef name a2 has no linkage because A has no linkage.

v “Program Linkage” on page 5
v “Scope” on page 1
v “typedef” on page 43
v “static Storage Class Specifier” on page 42
v “extern Storage Class Specifier” on page 37

Linkage Specifications — Linking to Non-C++ Programs

You can link C++ object modules to object modules produced using other
source languages such as C by using a linkage specification.

In z/OS C, the #pragma linkage directive specifies non-C declarations.

The syntax is:

�� extern string_literal

�

declaration

{ }
declaration

��

The string_literal is used to specify the linkage associated with a particular function.

CCNX02J
// This example illustrates linkage specifications.

extern "C" int printf(const char*,...);

Program Linkage
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int main(void)
{

printf("hello\n");
}

Here the string_literal, "C", tells the compiler that the routine printf(const
char*,...) is a C library function.

Note: This example is not guaranteed to work on all platforms. The only safe way
to declare a function from the C library in a C++ program is to include the
appropriate header. In this example you would substitute the line of code
with extern with the following line:
#include <stdio.h>

String literals used in linkage specifications should be considered as
case-sensitive.

All platforms support the following values for string_literal

"C++" Unless otherwise specified, objects and functions
have this default linkage specification.

"C" Indicates linkage to a C procedure

Name Spaces of Identifiers
Name spaces are the various syntactic contexts in which an identifier can be used.
Within the same context and the same scope, an identifier uniquely identifies an
entity. Note that the term name space as used here does not refer to the C++
namespace language feature. The z/OS compiler sets up name spaces to
distinguish among identifiers referring to different kinds of entities. Identical
identifiers in different name spaces do not interfere with each other, even if they are
in the same scope.

You must assign unique names within each name space to avoid conflict. You can
use the same identifier to declare different objects as long as each identifier is
unique within its name space. The syntactic context of an identifier within a program
lets the compiler resolve its name space without ambiguity.

You can redefine identifiers in the same name space but within enclosed program
blocks, as described in “Scope” on page 1.

Within each of the following four name spaces, the identifiers must be unique.

v Tags of these types must be unique within a single scope:
– Enumerations
– Structures and unions

v Members of structures, unions, and classes must be unique within a single
structure, union, or class type.

v Statement labels have function scope and must be unique within a function.

v All other ordinary identifiers must be unique within a single scope:
– C function names (C++ function names can be overloaded)
– Variable names
– Names of function parameters
– Enumeration constants
– typedef names.

Linkage Specifications

8 C/C++ Language Reference

|
|
|
|
|
|
|



Structure tags, structure members, variable names, and statement labels are in four
different name spaces. No conflict occurs among the four items named student in
the following example:
int get_item()
{

struct student /* structure tag */
{

char student[20]; /* structure member */
int section;
int id;

} student; /* structure variable */

goto student;
student:; /* null statement label */
return 0;

}

z/OS C/C++ interprets each occurrence of student by its context in the program.
For example, when student appears after the keyword struct, it is a structure tag.
When student appears after either of the member selection operators . or ->, the
name refers to the structure member. When student appears after the goto
statement, z/OS C/C++ passes control to the null statement label. In other contexts,
the identifier student refers to the structure variable.

Name Spaces of Identifiers
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Chapter 2. Lexical Elements

This section contains discussions of the basic lexical elements and conventions of
the C and C++ programming languages: tokens, character sets, comments,
identifiers, and literals.

Tokens
Source code is treated during preprocessing and compilation as a sequence of
tokens. A token is the smallest independent unit of meaning of a program as
defined by the compiler. There are five different types of tokens:
v Identifiers
v Keywords
v Literals
v Operators
v Punctuators

Adjacent identifiers, keywords and literals must be separated with white space.
Other tokens should be separated by white space to make the source code more
readable. White space includes blanks, horizontal and vertical tabs, new lines, form
feeds and comments.

v “Identifiers” on page 18
v “Keywords” on page 20
v “Literals” on page 23
v “Chapter 5. Expressions and Operators” on page 95
v “Source Program Character Set”

Source Program Character Set
The following lists the basic source character set that must be available at both
compile and run time:
v The uppercase and lowercase letters of the English alphabet

...a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v The decimal digits 0 through 9

0 1 2 3 4 5 6 7 8 9
v The following punctuators (A punctuator is a character that has syntactic and

semantic meaning, but does not specify an operation that produces a value.
Depending on the context, a punctuator can also be an operator.):
! " # % & ' ( ) * + , - . / :
; < = > ? [ \ ] _ { } x

– The caret (|) character in ASCII (bitwise exclusive OR symbol) or the
equivalent not (¬) character in EBCDIC

– The split vertical bar (¦) character in ASCII, which may be represented by the
vertical bar (|) character on EBCDIC systems

v The space character
v The control characters representing new-line, horizontal tab, vertical tab, and

form feed, and end of string (NULL character)

The remainder of this section discusses points specific to the z/OS C/C++
implementation.
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z/OS C/C++ uses the number sign (#) character for preprocessing only, and treats
the _ (underscore) character as a normal letter.

The execution character set also includes control characters that represent alert,
backspace, carriage return, and new-line.

In a source file, a record contains one line of source text; the end of a record
indicates the end of a source line.

The encoding of the following characters from the basic character set may vary
between the source-code generation environment and the run-time environment:
! # ’ [ ] \ { } ˜ | |

The z/OS C/C++ compiler normalizes the encoding of source files indicated by the
#pragma filetag directive and the LOCALE compile time option to the encoding
defined by code page 1047.

The compiler uses the character set that is specified for the LOCALE option for any
output. This includes:
v Listings that contain identifier names and source code
v String literals and character constants that are emitted in the object code
v Messages generated by the compiler

However, this does not include the source-code annotation in the pseudo-assembly
listings.

Depending on the EBCDIC encoding that your installation uses, you can express
the | and | characters as ¬ and ¦ respectively. This book refers to the | and |
symbols as the caret and vertical bar, respectively. If you do not specify the
NOLOCALE compile-time option, z/OS C/C++ does not perform normalization. It
assumes that the character set encoding is the IBM-1047 code page. In this case, it
recognizes both the broken and unbroken vertical bars as the vertical bar. The caret
and logical not sign are recognized as the caret. For a detailed description of the
#pragma filetag directive and the LOCALE option, refer to the description of
internationalization, locales, and character sets in the z/OS C/C++ Programming
Guide.

The compiler recognizes and supports the additional characters (the extended
character set) which you can meaningfully use in string literals and character
constants. The support for extended characters includes the multibyte character
sets.

z/OS systems represent multibyte characters by using Shiftout <SO> and Shiftin <SI>
pairs. Strings are of the form:
<SO> x y z <SI>

Or they can be mixed:
<SO> x <SI> y z
x <SO> y <SI> z

In the above, two bytes represent each character between the <SO> and <SI>
pairs. z/OS C/C++ restricts multibyte characters to character constants, string
constants, and comments.

Refer to the z/OS C/C++ Run-Time Library Reference for a discussion on strings
that are passed to library routines, and to “Character Literals” on page 28 of this

Character Set
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book for information on character constants. If you specify a lowercase a as part of
an identifier name, you cannot substitute an uppercase A in its place. You must use
the lowercase letter.

v “Chapter 5. Expressions and Operators” on page 95

Escape Sequences
You can represent any member of the execution character set by an escape
sequence. They are primarily used to put nonprintable characters in character and
string literals. For example, you can use escape sequences to put such characters
as tab, carriage return, and backspace into an output stream.

�� \ escape_sequence_character
x hexadecimal_digits
octal_digits

��

An escape sequence contains a backslash (\) symbol followed by one of the
escape sequence characters or an octal or hexadecimal number. A hexadecimal
escape sequence contains an x followed by one or more hexadecimal digits (0-9,
A-F, a-f). An octal escape sequence uses up to three octal digits (0-7). The value of
the hexadecimal or octal number specifies the value of the desired character or
wide character.

Note: The line continuation sequence (\ followed by a new-line character) is not an
escape sequence. It is used in character strings to indicate that the current
line continues on the next line.

The escape sequences and the characters they represent are:

Escape Sequence Character Represented

\a Alert (bell, alarm)
\b Backspace
\f Form feed (new page)
\n New-line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\' Single quotation mark
\" Double quotation mark
\? Question mark
\\ Backslash

The value of an escape sequence represents the member of the character set used
at run time. Escape sequences are translated during preprocessing. For example,
on a system using the ASCII character codes, the value of the escape sequence
\x56 is the letter V. On a system using EBCDIC character codes, the value of the
escape sequence \xE5 is the letter V.

Use escape sequences only in character constants or in string literals. An error
message is issued if an escape sequence is not recognized.

Character Set
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In string and character sequences, when you want the backslash to represent itself
(rather than the beginning of an escape sequence), you must use a \\ backslash
escape sequence. For example:

cout << "The escape sequence \\n." << endl;

This statement results in the following output:
The escape sequence \n.

The Unicode Standard

The Unicode Standard is currently supported only for z/OS C++.

The Unicode Standard is a standardized character code designed to encode
international texts for display and storage. It uses a unique 16-bit value to represent
each individual character. The Unicode standard includes the following:
v Alphabets used in Europe, Africa, and Asia
v Standard characters from China, Japan, Korea, and Taiwan
v Mathematical operators
v Technical symbols

The following diagram illustrates how Unicode assigns a unique 16-bit value to each
character:

0xAFB3 represents the character in BIG5 and the characters in Shift-

JIS. Unicode assigns each character with a unique code point. In this case is

assigned with 0x9673 and with 0xFF73 and 0xFF6F.

Although the 16-bit architecture of Unicode can handle more than 65,000 different
characters, the Unicode Standard can extend to handle an additional one million
characters by the surrogate extension mechanism. This mechanism uses two 16-bit
values to represent one character. The Unicode Standard has not used any of
these surrogates. (The current standard contains 38,885 characters.)

The Unicode Standard lets you dynamically compose accented characters. In the
Unicode Standard, a character and an accent are separate characters. In other
character encodings such as ASCII, you select from a set of accented characters.

Character Set
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The Unicode Standard supports bidirectional ordering of languages. Bidirectional
language ordering occurs when a script uses two or more languages with different
dominant directions. For example, a script would have bidirectional language
ordering if it mixes Arabic (which reads from right-to-left) with Greek (which reads
from left-to-right). The Unicode Standard includes characters that specify a change
of direction.

You can represent Unicode characters in your program by using one of the two
following forms, where each x is a hexadecimal digit:

\uxxxx
\Uxxxxxxxx

The first form, \uxxxx, represents a Unicode character that uses one 16–bit value.
The second form, \Uxxxxxxxx, represents a character that uses two 16–bit values.

Trigraph Sequences
Some characters from the C and C++ character set are not available in all
environments. You can enter these characters into a C source program using a
sequence of three characters called a trigraph. The trigraph sequences are:

??= # pound sign
??( [ left bracket
??) ] right bracket
??< { left brace
??> } right brace
??/ \ backslash
??’ | caret
??! | vertical bar
??- ˜ tilde

The preprocessor replaces trigraph sequences with the corresponding
single-character representation.

In the z/OS C/C++ implementation, the preprocessor makes this
replacement by using the code page that is indicated by the LOCALE option. If you
do not specify the LOCALE option, the preprocessor uses code page 1047.

At compile time, the compiler translates the trigraphs found in string literals and
character constants into the appropriate characters they represent. These
characters are in the coded character set you select by using the LOCALE compiler
option.

The z/OS C/C++ compiler will compile source files that were edited using
different encoding of character sets. However, they might not compile cleanly. z/OS
C/C++ does not compile source files that you edit with the following:
v A character set that does not support all the characters that are specified above,

even if the compiler can access those characters by a trigraph.
v A character set for which no one-to-one mapping exists between it and the

character set above.

Note: The exclamation mark (!) is a variant character. Its recognition depends on
whether or not the LOCALE option is active. For more information on variant
characters, refer to the z/OS C/C++Programming Guide.

Character Set
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Example
some_array??(i??) = n;

Represents:
some_array[i] = n;

Digraph Characters

You can represent unavailable characters in a z/OS C or C++ source
program by using a combination of two keystrokes that are called a digraph
character. The preprocessor reads digraphs as tokens during the preprocessor
phase.

The digraph characters are:

%: or %% # number sign
<: [ left bracket
:> ] right bracket
<% { left brace
%> } right brace
%:%: or
%%%%

## preprocessor macro concatenation operator

You can create digraphs by using macro concatenation. z/OS C/C++ does not
replace digraphs in string literals or in character literals. For example:
char *s = "<%%>"; // stays "<%%>"

switch (c)
{

case '<%' : { /* ... */ } // stays '<%'
case '%>' : { /* ... */ } // stays '%>'

}

The NODIGRAPH option disables processing of digraphs. The NODIGRAPH option is on
by default.

Comments
A comment is text replaced during preprocessing by a single space character; the
compiler therefore ignores all comments.

There are two kinds of comments:

v The /* (slash, asterisk) characters, followed by any sequence of
characters (including new lines), followed by the */ characters. This kind of
comment is commonly called a C-style comment.

v The // (two slashes) characters followed by any sequence of characters.
A new line not immediately preceded by a backslash terminates this form of
comment. This kind of comment is commonly called a single-line comment or a
C++ comment. A C++ comment can span more than one physical source line if it
is joined into one logical source line with line-continuation (\) characters. The
backslash character can also be represented by a trigraph.

v If the SSCOMM compiler option is in effect when you compile a C program,
double slashes (//) also specify the beginning of a comment. C++ permits
double-slash comments as part of the language definition.
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You can put comments anywhere the language allows white space. You cannot nest
C-style comments inside other C-style comments.

Multibyte characters can also be included within a comment.

Note: The /* or */ characters found in a character constant or string literal do not
start or end comments.

In the following program, the second printf() is a comment:
#include <stdio.h>

int main(void)
{

printf("This program has a comment.\n");
/* printf("This is a comment line and will not print.\n"); */

return 0;
}

Because the second printf() is equivalent to a space, the output of this program
is:
This program has a comment.

Because the comment delimiters are inside a string literal, printf() in the following
program is not a comment.
#include <stdio.h>

int main(void)
{

printf("This program does not have \
/* NOT A COMMENT */ a comment.\n");
return 0;
}

The output of the program is:
This program does not have
/* NOT A COMMENT */ a comment.

You cannot nest C-style comments. Each comment ends at the first occurrence of
*/.

In the following example, the comments are highlighted:
/* A program with nested comments. */

#include <stdio.h>

int main(void)
{

test_function();
return 0;

}

int test_function(void)
{

int number;
char letter;

/*
number = 55;
letter = 'A';

Comments
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/* number = 44; */
*/
return 999;
}

In test_function, the compiler reads the first /* through to the first */. The second
*/ causes an error. To avoid commenting over comments already in the source
code, you should use conditional compilation preprocessor directives to cause the
compiler to bypass sections of a program. For example, instead of commenting out
the above statements, change the source code in the following way:

/* A program with conditional compilation to avoid nested comments.
*/

#define TEST_FUNCTION 0
#include <stdio.h>

int main(void)
{

test_function();
return 0;

}

int test_function(void)
{

int number;
char letter;

#if TEST_FUNCTION
number = 55;
letter = 'A';
/*number = 44;*/

#endif /*TEST_FUNCTION */
}

You can nest single line comments within C-style comments. For example, the
following program will not output anything:
#include <stdio.h>

int main(void)
{

/*
printf("This line will not print.\n");
// This is a single line comment
// This is another single line comment
printf("This line will also not print.\n");
*/
return 0;

}

“Chapter 9. Preprocessor Directives” on page 195 describes conditional
compilation preprocessor directives. You can include multibyte characters with a
comment.

v “Trigraph Sequences” on page 15

Identifiers
Identifiers consist of an arbitrary number of letters or digits. They provide names for
the following language elements:
v Functions
v Objects
v Labels

Comments
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v Function parameters
v Macros and macro parameters
v Typedefs
v Enumerated types and enumerators

v Classes and class members

v Templates

v Template parameters

v Namespaces
v Struct and union names

An identifier has the form:

�� letter
_

� letter
digit
_

��

Case Sensitivity and Special Characters in Identifiers
The compiler distinguishes between uppercase and lowercase letters in identifiers.
For example, PROFIT and profit represent different identifiers.

Note: If you do not use the z/OS C compiler long name support and if the
names have external linkage, STOCKONHOLD and stockonhold, for example,
both refer to the same object; all external names are truncated to eight
characters and uppercased in the object file. For information on long name
support, see “longname” on page 241. For more information on the binder
and the prelinker, see z/OS C/C++ User’s Guide.

Avoid creating identifiers that begin with an underscore (_) for function names and
variable names.

The first character in an identifier must be a letter. The _ (underscore) character is
considered a letter; however, identifiers beginning with an underscore are reserved
by the compiler for identifiers at global namespace scope.

Identifiers that contain two consecutive underscores or begin with an underscore
followed by a capital letter are reserved in all contexts.

Although the names of system calls and library functions are not reserved
words if you do not include the appropriate headers, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for the maintainers of your
code and can cause errors at link time or run time. If you include a library in a
program, be aware of the function names in that library to avoid name duplications.
You should always include the appropriate headers when using standard library
functions.

Significant Characters in Identifiers

In general, z/OS C/C++ truncates external and internal identifiers after 1024
characters. However, the C compiler truncates external identifiers after 8 characters
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if the NOLONGNAME compile-time option is in effect. Also, the C++ compiler truncates
external identifiers that do not have C++ linkage after 8 characters if the NOLONGNAME
compile-time option is in effect.

Keywords
Keywords are identifiers reserved by the language for special use. Although you
can use them for preprocessor macro names, it is poor programming style. Only the
exact spelling of keywords is reserved. For example, auto is reserved but AUTO is
not. The following lists the keywords common to both the C and C++ languages:

auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if
int

long
register
return
short
signed
sizeof
static
struct
switch

typedef
union
unsigned
void
volatile
while

The C++ language also reserves the following keywords:

asm
bool
catch
class
const_cast
delete
dynamic_cast
explicit

export
false
friend
inline
mutable
namespace
new
operator

private
protected
public
reinterpret_cast
static_cast
template
this
throw

true
try
typeid
typename
using
virtual
wchar_t

Keywords for language extensions
In addition to language keywords, z/OS C/C++ reserves identifiers for use in

language extensions and for future use. For this usage, the following keyword is
common to both the z/OS C and C++ languages:

__callback

z/OS C reserves the following for use in language extensions:

_Packed __packed

z/OS C++ reserves the following for use in language extensions:

__cdecl _Export

Alternative representations of operators and punctuators
In addition to the reserved language and language extension keywords, the

following alternative representations of operators and punctuators are also reserved
in C++ when the DIGRAPH option is specified:
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and
and_eq
bitand

bitor
compl
not

not_eq
or
or_eq

xor
xor_eq

Alternative Tokens

C and C++ provide alternative representations for some operators and
punctuators. However, there are slight differences between the two treatments:
some alternative representations for C++ are treated as macros in C.

The following table lists the operators and punctuators and their alternative
representation:

Table 1. Digraphs that apply to both C and C++

Operator or Punctuator Alternative Representation

{ <%

} %>

[ <:

] :>

# %:

## %:%:

In addition to operators and punctuators listed above, C++ provides the
following alternative representations:

Table 2. Digraphs for C++ only

Operator or Punctuator Alternative Representation

&& and

| bitor

|| or

| xor

x compl

& bitand

&= and_eq

|= or_eq

|= xor_eq

! not

!= not_eq

The alternative representations in the preceding table are not provided in C,
but are defined as macros in the system header file iso646.h.
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z/OS C/C++ External Name Mapping

z/OS C/C++ maps the names of variables or functions that have external
linkages to names that are used in the object module. Note that this mapping is
only done when the NOLONGNAME compiler option is in effect.

When you compile a program, refer to the following guidance for using names of
variables or functions with external linkage:

v Do not use names of the library functions for user-defined functions.

v Some functions in the C library and C run-time environment begin with two
underscores (_ _). Do not use an underscore as the first letter of an identifier.

v The compiler maps each underscore to an at sign (@) for external names without
C++ linkage, except when you compile a program with the LONGNAME compile-time
option. In that case, the underscore remains as an underscore.

v IBM-provided functions have names that begin with IBM, CEE, and PLI. Avoid
using these names as the z/OS C/C++ compiler changes these names to prevent
conflicts between run-time functions and user-defined names. It changes all
static or extern variable names that begin with IBM, CEE, and PLI in your source
program to IB$, CE$, and PL$, respectively, in the object module. If you are using
interlanguage calls, avoid using these prefixes. The compiler of the calling or
called language may or may not change these prefixes in the same manner as
the z/OS C/C++ compiler does. All of this is completely integrated into the z/OS
C/C++ compiler, Debug Tool, and LE/370.

To call an external program or access an external variable that begins with IBM,
CEE, and PLI, use the #pragma map preprocessor directive. The following is an
example of #pragma map that forces an external name to be IBMENTRY.

#pragma
map(ibmentry,"IBMENTRY")

For more information on the #pragma map directive, see “map” on page 242.

z/OS Long Name Support

If you do not specify the LONGNAME option when you compile your code with
the C compiler, the compiler maps an underscore to an at sign. It also truncates
external names to 8 characters and changes them to uppercase. The C++ compiler
makes the same changes to external identifiers that do not have C++ linkage if you
do not specify the LONGNAME option.

For example, consider if you compile the following C program and do not specify
the LONGNAME option:
int test_name[4] = { 4, 8, 9, 10 };
int test_namesum;

int main(void) {
int i;
test_namesum = 0;

for (i = 0; i < 4; i++)
test_namesum += test_name[i];

printf("sum is %d\n", test_namesum);
}

In the above example, the C compiler displays the following message:
ERROR CCN3244 ./sum.c:2 External name TEST_NAM cannot be redefined.
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The compiler changes the external names test_namesum and test_name to
uppercase and truncates them to 8 characters. If you specify the CHECKOUT
compile-time option, the compiler will generate two informational messages to this
effect. Because the truncated names are now the same, the compiler produces an
error message and terminates the compilation.

If you compile the previous program with the LONGNAME compile-time option, the
compiler does not produce any warning or error messages. However, if you specify
the LONGNAME option, you must bind your program with the binder to produce a
program object in a PDSE. Otherwise you must use the prelinker.

The LONGNAME compile-time option supports mixed case, external names of up to
1024 characters for z/OS C/C++ programs.

Object modules that are produced by compiling with LONGNAME have external names
that are mixed case and up to 1024 characters long. Object modules that are
produced by compiling with NOLONGNAME have uppercase external names that are
limited to a length of 8 characters.

To use external C names that are longer than 8 characters or external C++ names
without C++ linkage that are longer than 8 characters, you can, in your source
code:

v Use the #pragma map directive to map long external names in the source code to
8 or less characters in the object module.
#pragma map(verylongname,"sname")

v Use the long name support that is provided by the compile-time option LONGNAME.
To use the long name support, you must do the following:

– Use the LONGNAME compile-time option when compiling your program.

– Use the binder to produce a program object in a PDSE, or use the prelinker.
For more information on the binder, prelinker, and LONGNAME compile-time
option, see the z/OS C/C++ User’s Guide.

Literals
A literal does not change its value while the program is running. The value of any
literal must be in the range of representable values for its type. The following are
the available types of literals:
v Integer
v Character
v Floating-point
v Fixed-Point Decimal Constants (z/OS C)
v String

v Boolean

The C language uses the term constant in place of the term literals.

v “Integer Literals” on page 24
v “Floating-Point Literals” on page 25
v “Character Literals” on page 28
v “String Literals” on page 29
v “Boolean Literals” on page 31
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Integer Literals
Integer literals can represent decimal, octal, or hexadecimal values. They are
numbers that do not have a decimal point or an exponential part. However, an
integer literal may have a prefix that specifies its base, or a suffix that specifies its
type.

�� decimal_constant
octal_constant
hexadecimal_constant

l
L u

U
u
U l

L

��

An integer constant without a suffix cannot have a value greater than
ULONG_MAX. An integer constant with a suffix that contains LL cannot have a value
greater than ULONGLONG_MAX. In these cases, the compiler will issue an out of range
error message. For information on the ULONG_MAX and the ULONGLONG_MAX macros,
see the z/OS C/C++Run-Time Library Reference.

The data type of an integer literal is determined by its form, value, and suffix. The
following table lists the integer literals and shows the possible data types. The
smallest data type that can represent the constant value is used to store the
constant.

Integer Literal Possible Data Types

unsuffixed decimal int, long int, unsigned long int

unsuffixed octal int, unsigned int, long int, unsigned long int

unsuffixed hexadecimal int, unsigned int, long int, unsigned long int

suffixed by u or U unsigned int, unsigned long int

suffixed by l or L long int, unsigned long int

suffixed by both u or U, and l or L unsigned long int

suffixed by ll or LL long long int, unsigned long long int (not z/OS)

suffixed by both u or U, and ll or LL unsigned long long int

A plus (+) or minus (-) symbol can precede an integer literal. The operator is
treated as a unary operator rather than as part of the literal.

v “Decimal Integer Literals”
v “Hexadecimal Decimal Literals” on page 25
v “Octal Decimal Literals” on page 25
v “Integer Variables” on page 49

Decimal Integer Literals
A decimal integer literal contains any of the digits 0 through 9. The first digit cannot
be 0.
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�� digit_1_to_9 � digit_0_to_9 ��

Integer literals beginning with the digit 0 are interpreted as an octal integer literal
rather than as a decimal integer literal.

The following are examples of decimal literals:
485976
-433132211
+20
5

A plus (+) or minus (-) symbol can precede the decimal integer literal. The operator
is treated as a unary operator rather than as part of the literal.

Hexadecimal Decimal Literals
A hexadecimal decimal literal begins with the 0 digit followed by either an x or X,
followed by any combination of the digits 0 through 9 and the letters a through f or
A through F. The letters A (or a) through F (or f) represent the values 10 through 15,
respectively.

�� 0x
0X

� digit_0_to_a
digit_0_to_A

��

The following are examples of hexadecimal integer literals:
0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Octal Decimal Literals
An octal decimal literal begins with the digit 0 and contains any of the digits 0
through 7.

�� 0 � digit_0_to_7 ��

The following are examples of octal decimal literals:
0
0125
034673
03245

Floating-Point Literals
A floating-point literal consists of the following:
v an integral part
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v a decimal point
v a fractional part
v an exponent part
v an optional suffix

Both the integral and fractional parts are made up of decimal digits. You can omit
either the integral part or the fractional part, but not both. You can omit either the
decimal point or the exponent part, but not both.

�� � �

�

�

. digit
digit exponent

digit .
exponent

digit exponent

f
F
l
L

��

Exponent:

e
E +

-

� digit

The magnitude range of float is approximately 1.2e-38 to 3.4e38. The magnitude
range of double or long double is approximately 2.2e-308 to 1.8e308. If a
floating-point constant is too large or too small, the result is undefined by the
language. The ranges depend on which floating point is used: HEX or IEEE.

The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If a suffix is not specified, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point literal. However, it is not
part of the literal; it is interpreted as a unary operator.

The following are examples of floating-point literals:

Floating-Point Constant Value

5.3876e4 53,876
4e-11 0.00000000004
1e+5 100000
7.321E-3 0.007321
3.2E+4 32000
0.5e-6 0.0000005
0.45 0.45
6.e10 60000000000
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When you use the printf function to display a floating-point constant value,
make certain that the printf conversion code modifiers that you specify are large
enough for the floating-point constant value.

v “Floating-Point Variables” on page 47
v “Unary Expressions” on page 113

Fixed-Point Decimal Constants (z/OS C Only)

Fixed-point decimal constants are an IBM extension to ISO C. This type is
available when you specify the LANGLVL(EXTENDED) compile-time option.

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The numeric part can include a digit sequence that represents the
whole-number part, followed by a decimal point (.), followed by a digit sequence
that represents the fraction part. Either the integral part or the fractional part, or
both must be present.

A fixed-point constant has the form:

�� �

� �

�

�

. digit_0_to_9

digit_0_to_9 . digit_0_to_9

digit_0_to_9 .

digit_0_to_9

D
d

��

A fixed-point constant has two attributes:

Number of digits (size)

Number of decimal places (precision ).

The suffix D or d indicates a fixed-point constant.

The following are examples of fixed-point decimal constants:

Fixed-Point Constant (size, precision)

1234567890123456D (16, 0)
12345678.12345678D (16, 8)
12345678.d ( 8, 0)
.1234567890d (10, 10)
12345.99d ( 7, 2)
000123.990d ( 9, 3)
0.00D ( 3, 2)

For more information on fixed-point decimal data types, see the z/OS C/C++
Programming Guide.
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Character Literals
A character literal contains a sequence of characters or escape sequences
enclosed in single quotation mark symbols, for example 'c'. A character literal may
be prefixed with the letter L, for example L'c'. A character literal without the L prefix
is an ordinary character literal or a narrow character literal. A character literal with
the L prefix is a wide character literal. An ordinary character literal that contains
more than one character or escape sequence (excluding single quotes ('),
backslashes (\) or new-line characters) is a multicharacter literal.

Character literals have the following form:

��
L

' � character
escape_sequence

' ��

At least one character or escape sequence must appear in the character literal. The
characters can be from the source program character set, excluding the single
quotation mark, backslash and new-line symbols. A character literal must appear on
a single logical source line.

A character literal that contains only one character has type char, which is
an integral type. A multicharacter literal has type int.

A character literal has type int.

A wide character literal has type wchar_t. A multicharacter literal has type int.

The value of a narrow or wide character literal containing a single character is the
numeric representation of the character in the character set used at run time. The
value of a narrow or wide character literal containing more than one character or
escape sequence is implementation-defined.

You can represent the double quotation mark symbol by itself, but you must use the
backslash symbol followed by a single quotation mark symbol (\' escape
sequence) to represent the single quotation mark symbol.

You can represent the new-line character by the \n new-line escape sequence.

You can represent the backslash character by the \\ backslash escape sequence.

The following are examples of character literals:
'a'
'\''
L'0'
'('

The remainder of this section is discusses points of difference in the z/OS C/C++
implementation of character literals.

The value of a character constant that contains a single character is the
numeric representation of the character in the character set that is used at compile
time. The value of a wide character constant containing a single multibyte character
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is the code for that character, as defined by the mbtowc() function. If the character
constant contains more than one character, the last 4 bytes represent the character
constant. In z/OS C++, a character constant can contain only one character.

In z/OS C, a character constant has type int. In z/OS C++, a character constant
has type char.

A wide character constant has type wchar_t, and is used to represent multibyte
characters. Multibyte characters represent characters that use more than one byte
for their encoding. Each multibyte character requires up to 4 bytes for its encoding.

v “char and wchar_t Type Specifiers” on page 45

String Literals
A string literal contains a sequence of characters or escape sequences enclosed in
double quotation mark symbols.

��
L

" � character
escape_sequence

" ��

A string literal with the prefix L is a wide string literal. A string literal without the
prefix L is an ordinary or narrow string literal.

The following are examples of string literals:
char
titles[ ] = "Handel's \"Water Music\"";
char *mail_addr = "Last Name First Name MI Street Address \

City Province Postal code ";
char *temp_string = "abc" "def" "ghi"; /* *temp_string = "abcdefghi\0" */
wchar_t *wide_string = L"longstring";

A null ('\0') character is appended to each string. For a wide string literal, the
value '\0' of type wchar_t is appended. By convention, programs recognize the
end of a string by finding the null character.

Multiple spaces contained within a string literal are retained.

To continue a string on the next line, use the line continuation sequence (\ symbol
immediately followed by a new-line character). A carriage return must immediately
follow the backslash. In the following example, the string literal second causes a
compile-time error.
char *first = "This string continues onto the next\

line, where it ends."; /* compiles successfully. */
char *second = "The comment makes the \ /* continuation symbol */

invisible to the compiler."; /* compilation error. */

Another way to continue a string is to have two or more consecutive strings.
Adjacent string literals will be concatenated to produce a single string. If a wide
string literal and a narrow string literal are adjacent to each other, the resulting
behavior is undefined. The following example demonstrates this:
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"hello " "there" /* is equivalent to "hello there" */
"hello " L"there" /* the behavior is undefined */
"hello" "there" /* is equivalent to "hellothere" */

Characters in concatenated strings remain distinct. For example, the strings ″\xab″
and ″3″ are concatenated to form ″\xab3″. However, the characters \xab and 3
remain distinct and are not merged to form the hexadecimal character \xab3.

Following any concatenation, '\0' of type char is appended at the end of each
string. C++ programs find the end of a string by scanning for this value. For a wide
string literal, '\0' of type wchar_t is appended. For example:
char *first = "Hello "; /* stored as "Hello \0" */
char *second = "there"; /* stored as "there\0" */
char *third = "Hello " "there"; /* stored as "Hello there\0" */

The type of a narrow string literal is array of const char and the type of a
wide string literal is array of const wchar_t. Both types have static storage
duration.

The type of a narrow string literal is array of char and the type of a wide
string literal is array of wchar_t.

Use the escape sequence \n to represent a new-line character as part of the string.
Use the escape sequence \\ to represent a backslash character as part of the
string. You can represent a single quotation mark symbol either by itself or with the
escape sequence \'. You must use the escape sequence \" to represent a double
quotation mark.

CCNX02K
/**
** This example illustrates escape sequences in string literals
**/

#include <iostream>
using namespace std;

int main ()
{

char *s ="Hi there! \n";
cout << s;
char *p = "The backslash character \\.";
cout << p << endl;
char *q = "The double quotation mark \".\n";
cout << q ;

}

This program produces the following output:
Hi there!
The backslash character \.
The double quotation mark ".

String Literals (z/OS)
This section describes considerations that are specific to z/OS C and C++

in regard to string literals.

In C, a character string literal has type array of char and static storage duration,
whereas in C++, it has type array of const char and static storage duration. In C, a
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wide character string literal has type array of wchar_t and static storage duration,
whereas n C++, it has type array of const wchar_t and static storage duration.

You should be careful when modifying string literals because the resulting behavior
depends on whether your strings are stored in read/write static memory. Both C
strings and C++ strings are readonly by default.

Use the #pragma strings directive or the ROSTRING compiler option to change the
default storage for string literals. “strings” on page 256 describes the #pragma
strings directive.

When a string literal appears more than once in the program source, how that string
is stored depends on whether strings are readonly or writeable. By default, the
compiler considers strings to be readonly. z/OS C/C++ may allocate only one
location for a readonly string; all occurrences will refer to that one location.
However, that area of storage is potentially write-protected. If strings are writeable,
then each occurrence of the string will have a separate, distinct storage location
that is always modifiable.

v “char and wchar_t Type Specifiers” on page 45
v “volatile and const Qualifiers” on page 69
v “static Storage Class Specifier” on page 42

Boolean Literals

There are only two boolean literals: true and false. These literals have type
bool and are not lvalues.

v “Boolean Variables” on page 46
v “Lvalues and Rvalues” on page 99
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Chapter 3. Declarations

A declaration establishes the names and characteristics of data objects and
functions used in a program. A definition allocates storage for data objects or
specifies the body for a function. When you define a type, no storage is allocated.

Declarations Overview
Declarations determine the following properties of data objects and their identifiers:
v Scope, which describes the visibility of an identifier in a block or source file.
v Linkage, which describes the association between two identical identifiers.
v Type, which describes the kind of data the object is to represent.

The lexical order of elements of a declaration for a data object is as follows:
v Storage duration and linkage specification
v Type specification
v Declarators, which introduce identifiers and make use of type qualifiers and

storage qualifiers
v Initializers, which initialize storage with initial values

All data declarations have the form:

�� �

storage_class_specifier
type_specifier
type_qualifier

�

,

declarator
initializer

; ��

The following table shows examples of declarations and definitions. The identifiers
declared in the first column do not allocate storage; they refer to a corresponding
definition. In the case of a function, the corresponding definition is the code or body
of the function. The identifiers declared in the second column allocate storage; they
are both declarations and definitions.

Declarations Declarations and Definitions

extern double pi; double pi = 3.14159265;

float square(float x); float square(float x) { return x*x; }

struct payroll; struct payroll {
char *name;
float salary;

} employee;

v “Scope” on page 1
v “Program Linkage” on page 5
v “Storage Class Specifiers” on page 34
v “Type Specifiers” on page 44
v “Chapter 4. Declarators” on page 73
v “Initializers” on page 79
v “Chapter 7. Functions” on page 153
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Objects
An object is a region of storage that contains a value or group of values. Each
value can be accessed using its identifier or a more complex expression that refers
to the object. In addition, each object has a unique data type. Both the identifier and
data type of an object are established in the object declaration.

The data type of an object determines the initial storage allocation for that object
and the interpretation of the values during subsequent access. It is also used in any
type-checking operations.

Both C and C++ have built-in, or fundamental data types and user-defined data
types. Standard data types include signed and unsigned integers, floating-point
numbers, and characters. User-defined types include enumerations, structures,
unions, and classes.

An instance of a class type is commonly called a class object. The individual class
members are also called objects. The set of all member objects comprises a class
object.

v “Chapter 12. Classes” on page 283

Storage Class Specifiers
The storage class specifier used within the declaration determines whether:
v The object has internal, external, or no linkage
v The object is to be stored in memory or in a register, if available
v The object receives the default initial value 0 or an indeterminate default initial

value
v The object can be referenced throughout a program or only within the function,

block, or source file where the variable is defined
v The storage duration for the object is static (storage is maintained throughout

program run time) or automatic (storage is maintained only during the execution
of the block where the object is defined)

For a function, the storage class specifier determines the linkage of the function.

Declarations with the auto or register storage- class specifier result in automatic
storage. Those with the static storage-class specifier result in static storage.

Most local declarations that do not include the extern storage-class specifier
allocate storage; however, function declarations and type declarations do not
allocate storage.

The only storage-class specifiers allowed in a namespace or global scope
declaration are static and extern.

This section describes the following storage class specifiers:
v auto
v extern

v mutable
v register
v static
v typedef
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v “auto Storage Class Specifier”
v “extern Storage Class Specifier” on page 37
v “mutable Storage Class Specifier” on page 40
v “register Storage Class Specifier” on page 41
v “static Storage Class Specifier” on page 42
v “typedef” on page 43
v “Program Linkage” on page 5

auto Storage Class Specifier
The auto storage class specifier lets you declare a variable with automatic storage.
A variable x that has automatic storage is deleted when the block in which x was
declared exits.

You can only apply the auto storage class specifier to names of variables declared
in a block or to names of function parameters. However, these names by default
have automatic storage. Therefore the storage class specifier auto is usually
redundant in a data declaration.

Initialization

You can initialize any auto variable except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the
expression representing the initial value can be any valid C or C++ expression. For
structure and union members, the initial value must be a valid constant expression
if an initializer list is used. The object is then set to that initial value each time the
program block that contains the object’s definition is entered.

Note that if you use the goto statement to jump into the middle of a block,
automatic variables within that block are not initialized.

Storage

Objects with the auto storage class specifier have automatic storage duration. Each
time a block is entered, storage for auto objects defined in that block is made
available. When the block is exited, the objects are no longer available for use.

If an auto object is defined within a function that is recursively invoked, memory is
allocated for the object at each invocation of the block.

Examples of auto Storage Class
The following program shows the scope and initialization of auto variables. The
function main defines two variables, each named auto_var. The first definition
occurs on line 10. The second definition occurs in a nested block on line 13. While
the nested block is running, only the auto_var that is created by the second
definition is available. During the rest of the program, only the auto_var that is
created by the first definition is available.

CCNRAAF
1 /****************************************************
2 ** Example illustrating the use of auto variables **
3 ****************************************************/
4
5 #include <stdio.h>
6
7 int main(void)
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8 {
9 void call_func(int passed_var);
10 auto int auto_var = 1; /* first definition of auto_var */
11
12 {
13 int auto_var = 2; /* second definition of auto_var */
14 printf("inner auto_var = %d\n", auto_var);
15 }
16 call_func(auto_var);
17 printf("outer auto_var = %d\n", auto_var);
18 return 0;
19 }
20
21 void call_func(int passed_var)
22 {
23 printf("passed_var = %d\n", passed_var);
24 passed_var = 3;
25 printf("passed_var = %d\n", passed_var);
26 }

This program produces the following output:
inner auto_var = 2
passed_var = 1
passed_var = 3
outer auto_var = 1

The following example uses an array that has the storage class auto to pass a
character string to the function sort. The function sort receives the address of the
character string, rather than the contents of the array. The address enables sort to
change the values of the elements in the array.

CCNRAAG
/*****************************************************************
** Sorted string program -- this example passes an array name **
** to a function **
*****************************************************************/

#include <stdio.h>
#include <string.h>

int main(void)
{

void sort(char *array, int n);
char string[75];
int length;

printf("Enter letters:\n");
scanf("%74s", string);
length = strlen(string);
sort(string,length);
printf("The sorted string is: %s\n", string);

return(0);
}

void sort(char *array, int n)
{

int gap, i, j, temp;

for (gap = n / 2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)

for (j = i - gap; j >= 0 && array[j] > array[j + gap];
j -= gap)

{
temp = array[j];
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array[j] = array[j + gap];
array[j + gap] = temp;

}
}

When you run the program, interaction with the program could produce:

Output Enter letters:

Input zyfab

Output The sorted string is: abfyz

v “Block Statement” on page 179
v “goto Statement” on page 193
v “Function Declarations” on page 154

extern Storage Class Specifier
The extern storage class specifier lets you declare objects and functions that
several source files can use. All object declarations that occur outside a function
and that do not contain a storage class specifier declare identifiers with external
linkage. All function definitions that do not specify a storage class define functions
with external linkage.

In C++, the extern storage class specifier can only be applied to names of
objects or functions. Using the extern specifier with type declarations is illegal.

An extern variable, function definition, or declaration also makes the described
variable or function usable by the succeeding part of the current source file. This
declaration does not replace the definition. The declaration is used to describe the
variable that is externally defined.

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier found within a block refers to that same object. If no other
declaration for the identifier exists at file scope, the identifier has external linkage.

An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If you do not specify a storage class specifier, the function has external linkage. It is
an error to include a declaration for the same function with the storage class
specifier static before the declaration with no storage class specifier because of the
incompatible declarations. Including the extern storage class specifier on the
original declaration is valid and the function has internal linkage.

In C++, an extern declaration cannot appear in class scope.

Initialization

You can initialize any object with the extern storage class specifier at namespace
(or global scope in C). You can initialize an extern object with an initializer that
must either:
v Appear as part of the definition and the initial value must be described by a

constant expression. OR
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v Reduce to the address of a previously declared object with static storage
duration. You may modify this object with pointer arithmetic. (In other words, you
may modify the object by adding or subtracting an integral constant expression.)

If you do not explicitly initialize an extern variable, its initial value is zero of the
appropriate type. Initialization of an extern object is completed by the time the
program starts running.

Storage

All extern objects have static storage duration. Memory is allocated for extern
objects before the main function begins running. When the program finishes
running, the storage is freed.

v “External Linkage” on page 6
v “Internal Linkage” on page 5
v “static Storage Class Specifier” on page 42
v “Class Scope” on page 3
v “Chapter 10. Namespaces” on page 261

extern Storage Class Specifier (z/OS)

In z/OS C++, you can declare functions with the following:

Linkage By specifying

C extern "C"

C++ extern "C++

OS extern "OS"

PLI extern "PLI"

builtin extern "builtin"

COBOL extern "COBOL"

FORTRAN extern "FORTRAN"

OS_DOWNSTACK
extern "OS_DOWNSTACK"

OS_UPSTACK
extern "OS_UPSTACK"

OS_NOSTACK
extern "OS_NOSTACK"

OS31_NOSTACK
extern "OS31_NOSTACK"

REFERENCE extern "REFERENCE"

There are some limitations to using extern to specify non-C++ linkage for a
function. While the C++ language supports overloading, other languages do not.
The implications of this are:

v You cannot overload a function that has non-C++ linkage:
extern "FORTRAN"{int func(int);}
extern "FORTRAN"{int func(int,int);} // not allowed-compiler

// will issue an error message
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v You cannot declare a function with a linkage specification if you have already
used the same function name in a declaration without a linkage specification:
int func(int);
extern "FORTRAN"{int func(int,int);} // not allowed-compiler

// will issue an error message

v You can overload a function as long as it has C++ (default) linkage. Therefore,
z/OS C/C++ allows the following series of statements:
extern "FORTRAN"{int func(int,int);}
int func(int); // function with C++ linkage
int func(int,int); // overloaded function with C++ linkage

v You cannot redefine a function that has a linkage specification:
extern func(int);
extern "FORTRAN"{int func(int,int);} // not allowed-compiler

// will issue an error message

The following fragments illustrate the use of extern "C" :
extern "C" int cf(); //declare function cf to have C linkage

extern "C" int (*c_fp)(); //declare a pointer to a function,
// called c_fp, which has C linkage

extern "C" {
typedef void(*cfp_T)(); //create a type pointer to function with C

// linkage
void cfn(); //create a function with C linkage
void (*cfp)(); //create a pointer to a function, with C

// linkage
}

Linkage compatibility affects all C library functions that accept a user function
pointer as a parameter. Use the extern "C" linkage specification to ensure that the
declared linkages are the same. An example of these library functions is qsort().
See other z/OS documentation for more information.

The following example fragment uses extern "C" with qsort().
#include <stdlib.h>

// function to compare table elements
extern "C" int TableCmp(const void *, const void *); // C linkage
extern void * GenTable(); // C++ linkage

int main() {
void *table;

table = GenTable(); // generate table
qsort(table, 100, 15, TableCmp); // sort table, using TableCmp

// and C library routine qsort();
}

In z/OS C++, an extern declaration cannot appear in class scope.

Controlling External Static (z/OS)

Certain program variables with the extern storage class may be constant
and never be updated. If this is the case, it is not necessary to have a copy of
these variables made for every user of the program. In addition, there may be a
need to share constant program variables between C and another language.
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Examples of extern Storage Class (z/OS)

The following program fragment shows how to force an external program
variable to be part of a program that includes executable code and constant data. It
uses the #pragma variable(varname, NORENT) directive:
#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0
};

extern float totals[5];

int main(void) {...

}

In this example, you compile the source file with the RENT option. The executable
code includes the variable rates as you specify the #pragma variable(rates,
NORENT). The writable static includes the variable totals. Each user has a personal
copy of the array totals, and all users of the program share the array rates. This
sharing may yield a performance and storage benefit.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,
program variables with the static storage class. z/OS C/C++ always includes
program variables with the static storage class with the writable static. An
informational message appears if you write to a nonreentrant variable when you
specify the C CHECKOUT compile-time option.

When you specify #pragma variable(varname, NORENT) for a variable, ensure that
your program never writes to this variable. Program exceptions or unpredictable
program behavior may result should this be the case. In addition, you must include
#pragma variable(varname, NORENT) in every source file where you reference or
define the variable.

Refer to z/OS C/C++ User’s Guide for more information on the RENT and NORENT
compile-time options.

mutable Storage Class Specifier

The mutable storage class specifier is used only on a class data member to
make it modifiable even though the member is part of an object declared as const.
You cannot use the mutable specifier with names declared as static or const, or
reference members.
class A
{

public:
A() : x(4), y(5) { };
mutable int x;
int y;

};

int main()
{

const A var2;
var2.x = 345;
// var2.y = 2345;

}
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In this example, the compiler would not allow the assignment var2.y = 2345
because var2 has been declared as const. The compiler will allow the assignment
var2.x = 345 because A::x has been declared as mutable.

v “static Storage Class Specifier” on page 42
v “volatile and const Qualifiers” on page 69
v “References” on page 92

register Storage Class Specifier
The register storage class specifier indicates to the compiler that a heavily used
variable (such as a loop control variable) within a local scope data definition or a
parameter declaration should be allocated a register to minimize access time.

It is equivalent to the auto storage class except that the compiler places the object,
if possible, into a machine register for faster access. An object having the register
storage class specifier must be defined within a block or declared as a parameter to
a function.

Initialization

You can initialize any register object except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the
expression representing the initial value can be any valid C or C++ expression. For
structure and union members, the initial value must be a valid constant expression
if an initializer list is used. The object is then set to that initial value each time the
program block that contains the object’s definition is entered.

Storage

Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects defined in that block are
made available. When the block is exited, the objects are no longer available for
use.

If a register object is defined within a function that is recursively invoked, the
memory is allocated for the variable at each invocation of the block.

The register storage class specifier indicates that the object is heavily used and
indicates to the compiler that the value of the object should reside in a machine
register. Because of the limited size and number of registers available on most
systems, few variables can actually be put in registers.

If the compiler does not allocate a machine register for a register object, the object
is treated as having the storage class specifier auto.

Restrictions

You cannot use the register storage class specifier in namespace
scope (or global scope in C) data declarations. In C programs, you cannot apply the
address (&) operator to register variables. However, C++ lets you take the address
of an object with the register storage class. For example:

register int i;
int* b = &i; // valid in C++, but not in C
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v “Local Scope” on page 1
v “auto Storage Class Specifier” on page 35
v “References” on page 92

static Storage Class Specifier
The static storage class specifier lets you define objects with static storage duration
and internal linkage, or to define functions with internal linkage.

The static storage class specifier can only be applied to the following names:
v Objects
v Functions
v Class members
v Anonymous unions

You cannot declare any of the following as static:
v Type declarations
v Function declarations within a block
v Function parameters

Objects with the static storage class specifier have static storage duration. The
storage for a static variable is made available when the program begins running.
When the program finishes running, the memory is freed.

For example, suppose a static variable x has been declared in function f(). When
the program exits the scope of f(), x is not destroyed. The following example
demonstrates this:
#include <stdio.h>

int f(void) {
static int i = 0;
i++;
return i;

}

int main(void) {
int j;
for (j = 0; j < 5; j++) {

printf("Value of f(): %d\n", f());
}
return 0;

}

The following is the output of the above example:
Value of f(): 1
Value of f(): 2
Value of f(): 3
Value of f(): 4
Value of f(): 5

Because i is a static variable, it is not reinitialized to 0 on successive calls to f().

If you eplicitly declare an object, reference, function, or function template static in
namespace or global scope, that entity will have internal linkage; you cannot use
that entity in other translation units.

Initialization
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You initialize a static object with a constant expression, or an expression
that reduces to the address of a previously declared extern or static object,
possibly modified by a constant expression.

You may initialize a static object with a non-constant expression.

If you do not explicitly initialize a static (or external) variable, it will have a
value of zero of the appropriate type.

A static object of class type will use the default constructor if you do not
initialize it.

Automatic and register variables that are not initialized will have undefined values.

v “Internal Linkage” on page 5
v “extern Storage Class Specifier” on page 37
v “Objects” on page 34
v “Class Member Lists” on page 293
v “Anonymous Unions” on page 62

typedef
A typedef declaration lets you define your own identifiers that can be used in place
of type specifiers such as int, float, and double. A typedef declaration does not
reserve storage. The names you define using typedef are not new data types. They
are synonyms for the data types or combinations of data types they represent.

In C++, a typedef name must be different from any class type name
declared within the same scope. If the typedef name is the same as a class type
name, it can only be so if that typedef is a synonym of the class name. This
condition is not the same as in C.

When an object is defined using a typedef identifier, the properties of the defined
object are exactly the same as if the object were defined by explicitly listing the
data type associated with the identifier.

Examples of typedef Declarations

The following statements declare LENGTH as a synonym for int and then use this
typedef to declare length, width, and height as integer variables:
typedef int LENGTH;
LENGTH length, width, height;

The following declarations are equivalent to the above declaration:
int length, width, height;

Similarly, typedef can be used to define a class type (structure, union, or C++
class). For example:
typedef struct {

int scruples;
int drams;
int grains;
} WEIGHT;
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The structure WEIGHT can then be used in the following declarations:
WEIGHT chicken, cow, horse, whale;

A C++ class defined in a typedef without being named is given a dummy
name and the typedef name for linkage. Such a class cannot have constructors or
destructors. For example:
typedef class {

Trees();
} Trees;

Here the function Trees() is an ordinary member function of a class whose type
name is unspecified. In the above example, Trees is an alias for the unnamed
class, not the class type name itself, so Trees() cannot be a constructor for that
class.

v “Type Specifiers”
v “Arrays” on page 86
v “Structures” on page 51
v “Unions” on page 59
v “Chapter 12. Classes” on page 283
v “Constructors and Destructors Overview” on page 341

Type Specifiers

In C++, types must be declared in declarations. They may not be declared
in expressions.

Type specifiers indicate the type of the object or function being declared. The
following are the available kinds of type specifiers:
v Simple type specifiers

v Class specifiers
v Enumerated specifiers

v Elaborated type specifiers
v const and volatile qualifiers

v “Simple Type Specifiers”
v “Declaring Class Types” on page 283
v “Enumerations” on page 65
v “Type Specifiers”
v “Type Specifiers”

Simple Type Specifiers
A simple type specifier either specifies a (previously declared) user-defined type or
a fundamental type. A fundamental type is a type built-in to the language. The
following describes how the fundamental types are categorized:
v Arithmetic types

– Integral types

- bool
- char
- wchar_t
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- Signed integer types
v signed char
v short int
v int
v long int

- Unsigned integer types

v unsigned char

v unsigned short int

v unsigned int

v unsigned long int
– Floating-point types

- float
- double
- long double

v void

v “char and wchar_t Type Specifiers”
v “Boolean Variables” on page 46
v “Floating-Point Variables” on page 47
v “Integer Variables” on page 49
v “void Type” on page 50

char and wchar_t Type Specifiers
The char specifier has the following syntax:

��
unsigned
signed

char ��

The char specifier is an integral type.

A char has enough storage to represent a character from the basic character set.
The amount of storage allocated for a char is implementation-dependent.

You initialize a variable of type char with a character literal (consisting of one
character) or with an expression that evaluates to an integer.

Use signed char or unsigned char to declare numeric variables that occupy a
single byte.

For the purposes of distinguishing overloaded functions, a C++ char is a
distinct type from signed char and unsigned char.

There are three character data types: char, signed char, and unsigned
char in the z/OS C and C++implementation. These three data types are not
compatible. If you specify LANGLVL(ANSI), the C compiler recognizes char, unsigned
char, and signed char as distinct types. They are always distinct types in C++.

The character data types provide enough storage to hold any member of
the character set your program uses at run time. The amount of storage that is
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allocated for a char is implementation-dependent. The z/OS C/C++ compiler
represents a character by 8 bits, as defined in the CHAR_BIT macro in the
<limits.h> header.

The default character type behaves like an unsigned char. To change this
default, use #pragma chars, described in “chars” on page 224.

In the z/OS C and C++implementation, it does not matter whether a char
data object is signed or unsigned, you can declare the object as having the data
type char. Otherwise, explicitly declare signed char or unsigned char. When a char
(signed or unsigned) is widened to an int, its value is preserved.

The wchar_t Type Specifier

The wchar_t type specifier has enough storage to represent a wide character
literal. (A character literal that is prefixed with the letter L, for example L'x', is a
wide character literal).

The wchar_t type specifier is an integral type.

Examples of the char Type Specifier

The following example defines the identifier end_of_string as a constant object of
type char having the initial value \0 (the null character):
const char end_of_string = '\0';

The following example defines the unsigned char variable switches as having the
initial value 3:
unsigned char switches = 3;

The following example defines string_pointer as a pointer to a character:
char *string_pointer;

The following example defines name as a pointer to a character. After initialization,
name points to the first letter in the character string "Johnny":
char *name = "Johnny";

The following example defines a one-dimensional array of pointers to characters.
The array has three elements. Initially they are a pointer to the string "Venus", a
pointer to "Jupiter", and a pointer to "Saturn":
static char *planets[ ] = { "Venus", "Jupiter", "Saturn" };

v “Character Literals” on page 28
v “Integer Variables” on page 49

Boolean Variables
Use the type specifier bool and the literals true and false to make boolean

logic tests. A boolean logic test is used to express the results of a logical operation.
For example:
bool f(int a, int b)
{

return a==b;
}
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If a and b have the same value, f() returns true. If not, f() returns false.

Variables of type bool can hold either one of two values: true or false. An rvalue of
type bool can be promoted to an integral type. A bool rvalue of false is promoted to
the value 0 and a bool rvalue of true is promoted to the value 1.

v “Boolean Literals” on page 31
v “Integer Variables” on page 49

Floating-Point Variables
There are three types of floating-point variables:
v float
v double
v long double

To declare a data object that is a floating-point type, use the following float
specifier:

�� float
double
long double

��

The declarator for a simple floating-point declaration is an identifier. Initialize a
simple floating-point variable with a float constant or with a variable or expression
that evaluates to an integer or floating-point number. The storage class of a variable
determines how you initialize the variable.

Note that z/OS C/C++ supports IEEE binary floating-point variables as well
as IBM S/390 hexadecimal floating-point variables. For details on the FLOAT option,
please see z/OS C/C++ User’s Guide.

Examples of Floating-Point Data Types

The following example defines the identifier pi as an object of type double:
double pi;

The following example defines the float variable real_number with the initial value
100.55:
static float real_number = 100.55f;

Note: If you do not add the f suffix to a floating-point literal, that number will be of
type double. If you initialize an object of type float with an object of type
double, the compiler will implictly convert the object of type double to an
object of type float.

The following example defines the float variable float_var with the initial value
0.0143:
float float_var = 1.43e-2f;

The following example declares the long double variable maximum:
extern long double maximum;
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The following example defines the array table with 20 elements of type double:
double table[20];

v “Floating-Point Literals” on page 25
v “Assignment Expressions” on page 134

Fixed-Point Decimal Data Types (z/OS C Only)
Use the type specifier decimal(n,p) to declare fixed-point decimal variables

and to initialize them with fixed-point decimal constants. For this type specifier,
decimal is a macro that is defined in <decimal.h>. Remember to include
<decimal.h> if you use fixed-point decimals in your program.

Fixed-point decimal types are classified as arithmetic types. The decimal(n,p) type
specifier designates a decimal number with n digits, and p decimal places. n is the
total number of digits for the integral and decimal parts combined. p is the number
of digits for the decimal part only. For example, decimal(5,2) represents a number,
such as, 123.45 where n=5 and p=2. The value for p is optional. If you leave it out,
the default value is 0.

In the type specifier, n and p have a range of allowed values according to the
following rules:
p <= n
1 <= n <= DEC_DIG
0 <= p <= DEC_PRECISION

Note: <decimal.h> defines DEC_DIG (the maximum number of digits n) and
DEC_PRECISION (the maximum precision p). Currently, it uses a maximum of
31 digits for both limits.

The following examples show how to declare a variable as a fixed- point decimal
data type:
decimal(10,2) x;
decimal(5,0) y;
decimal(5) z;
decimal(18,10) *ptr;
decimal(8,2) arr[100];

In the previous example:
v x can have values between -99999999.99D and +99999999.99D.
v y and z can have values between -99999D and +99999D.
v ptr is a pointer to type decimal(18,10).
v arr is an array of 100 elements, where each element is of type decimal(8,2).

The fixed-point decimal type specifier has the form:

�� decimal ( constant_expression )
, constant_expression

��

z/OS C/C++ evaluates the first constant_expression as a positive integral constant
expression. The second constant_expression is optional. If you leave it out, the
default value is 0. The type specifiers, decimal(n,0) and decimal(n) are
type-compatible.
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Integer Variables
Integer variables fall into the following categories:
v integral types

– bool
– char
– wchar_t
– signed integer types

- signed char
- short int
- int
- long int

– unsigned integer types

- unsigned char

- unsigned short int

- unsigned int

- unsigned long int

The default integer type for a bit field is unsigned.

The amount of storage allocated for integer data is implementation-dependent.

The unsigned prefix indicates that the object is a nonnegative integer. Each
unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer than the
equivalent signed type.

The declarator for a simple integer definition or declaration is an identifier. You can
initialize a simple integer definition with an integer constant or with an expression
that evaluates to a value that can be assigned to an integer. The storage class of a
variable determines how you can initialize the variable.

When the arguments in overloaded functions and overloaded operators are
integer types, two integer types that both come from the same group are not treated
as distinct types. For example, you cannot overload an int argument against a
signed int argument.

Examples of Integer Data Types

The following example defines the short int variable flag:
short int flag;

The following example defines the int variable result:
int result;

The following example defines the unsigned long int variable ss_number as having
the initial value 438888834 :
unsigned long ss_number = 438888834ul;

v “Integer Literals” on page 24
v “Decimal Integer Literals” on page 24
v “Octal Decimal Literals” on page 25
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v “Hexadecimal Decimal Literals” on page 25
v “Chapter 11. Overloading” on page 269
v “z/OS Integer Variables”

z/OS Integer Variables
In the z/OS C and C++ implementation, integer variables fall into the

following categories:
v short int or short or signed short int or signed short
v signed int or int
v long int or long or signed long int or signed long
v long long int or long long or signed long long int or signed long long
v unsigned short int or unsigned short
v unsigned or unsigned int
v unsigned long int or unsigned long
v unsigned long long int or unsigned long long

z/OS C/C++ supports the long long data type for language levels other
than ANSI by default.

You can also control the support for long long using the LONGLONG suboption of
LANGLVL. For example, specifying LANGLVL(ANSI, LONGLONG) would add the
long long data type to the ISO language level. Please refer to z/OS C/C++ User’s
Guide for information on using the LANGLVL option.

The default integer type for a bit field is unsigned. The amount of storage that is
allocated for integer data is implementation- dependent.

z/OS C/C++ provides three sizes of integer data types. Objects that are of type
short have a length of 2 bytes of storage. Objects that are of type long have a
length of 4 bytes of storage. Objects that are of type long long have a length of 8
bytes of storage. An int data type represents the most efficient data storage size
on the system (the word-size of the machine) and receives 4 bytes of storage.

void Type
The void data type always represents an empty set of values. The only object that
can be declared with the type specifier void is a pointer.

When a function does not return a value, you should use void as the type specifier
in the function definition and declaration. An argument list for a function taking no
arguments is void.

You cannot declare a variable of type void, but you can explicitly convert any
expression to type void. The resulting expression can only be used as one of the
following:
v An expression statement
v The left operand of a comma expression
v The second or third operand in a conditional expression.

Example of void Type

In the following example, the function find_max is declared as having type void.

Note: The use of the sizeof operator in the line find_max(numbers,
(sizeof(numbers) / sizeof(numbers[0]))); is a standard method of
determining the number of elements in an array.
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CCNRAAM
/**
** Example of void type
**/
#include <stdio.h>

/* declaration of function find_max */
extern void find_max(int x[ ], int j);

int main(void)
{

static int numbers[ ] = { 99, 54, -102, 89};

find_max(numbers, (sizeof(numbers) / sizeof(numbers[0])));

return(0);
}

void find_max(int x[ ], int j)
{ /* begin definition of function find_max */

int i, temp = x[0];

for (i = 1; i < j; i++)
{

if (x[i] > temp)
temp = x[i];

}
printf("max number = %d\n", temp);

} /* end definition of function find_max */

v “Pointers” on page 81
v “Comma Expression ,” on page 140
v “Conditional Expressions” on page 137
v “Function Declarations” on page 154

Structures
A structure contains an ordered group of data objects. Unlike the elements

of an array, the data objects within a structure can have varied data types. Each
data object in a structure is a member or field.

Use structures to group logically related objects. For example, to allocate storage
for the components of one address, define the following variables:

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

To allocate storage for more than one address, group the components of each
address by defining a structure data type and as many variables as you need to
have the structure data type.

In the following example, line int street_no; through to char *postal_code;
declare the structure tag address:

struct address {
int street_no;
char *street_name;
char *city;
char *prov;
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char *postal_code;
};

struct address perm_address;
struct address temp_address;
struct address *p_perm_address = &perm_address;

The variables perm_address and temp_address are instances of the structure data
type address. Both contain the members described in the declaration of address.
The pointer p_perm_address points to a structure of address and is initialized to
point to perm_address.

Refer to a member of a structure by specifying the structure variable name with the
dot operator (.) or a pointer with the arrow operator (->) and the member name.
For example, both of the following:
perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

assign a pointer to the string "Ontario" to the pointer prov that is in the structure
perm_address.

All references to structures must be fully qualified. In the example, you cannot
reference the fourth field by prov alone. You must reference this field by
perm_address.prov.

Structures with identical members but different names are not compatible and
cannot be assigned to each other.

Structures are not intended to conserve storage. If you need direct control of byte
mapping, use pointers.

You cannot declare a structure with members of incomplete types.

In C++ a structure is the same as a class except that its members and
inheritance are public by default.

v “Chapter 12. Classes” on page 283
v “Dot Operator .” on page 107
v “Arrow Operator −>” on page 107
v “Incomplete Types” on page 71

Declaring and Defining a Structure
A structure type definition describes the members that are part of the

structure. It contains the struct keyword followed by an optional identifier (the
structure tag) and a brace-enclosed list of members.

A structure definition has the form:

�� struct

�

identifier

{ member ; }
identifier

��
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A structure definition for the z/OS implementation has the following variation
of that form:

��
_Packed

struct

�

identifier

{ member ; }
identifier

��

A structure declaration has the same form as a structure definition except the
declaration does not have a brace-enclosed list of members.

The keyword struct followed by the identifier (tag) names the data type. If you do
not provide a tag name to the data type, you must put all variable definitions that
refer to it within the declaration of the data type.

The list of members provides the data type with a description of the values that can
be stored in the structure.

A structure data member definition has the form of a variable declaration. However
you may declare a bit-field as a member for a structure. A member that does not
represent a bit field can be of any data type and can have the volatile or const
qualifier.

Identifiers used as structure or member names can be redefined to represent
different objects in the same scope without conflicting. You cannot use the name of
a member more than once in a structure type, but you can use the same member
name in another structure type that is defined within the same scope.

You cannot declare a structure type that contains itself as a member, but you can
declare a structure type that contains a pointer to itself as a member.

v “Declaring and Using Bit Fields in Structures” on page 55
v “volatile and const Qualifiers” on page 69

Defining a Structure Variable
A structure variable definition contains an optional storage class keyword,

the struct keyword, a structure tag, a declarator, and an optional identifier. The
structure tag indicates the data type of the structure variable.

The keyword struct is optional in C++.

You can declare structures having any storage class. Most compilers, however, treat
structures declared with the register storage class specifier as automatic structures.

v “auto Storage Class Specifier” on page 35
v “register Storage Class Specifier” on page 41
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Initializing Structures
The initializer contains an = (equal sign) followed by a brace-enclosed

comma-separated list of values. You do not have to initialize all members of a
structure.

The following definition shows a completely initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
static struct address perm_address =

{ 3, "Savona Dr.", "Dundas", "Ontario", "L4B 2A1"};

The values of perm_address are:

Member Value
perm_address.street_no 3
perm_address.street_name address of string "Savona Dr."
perm_address.city address of string "Dundas"
perm_address.prov address of string "Ontario"
perm_address.postal_code address of string "L4B 2A1"

The following definition shows a partially initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
struct address temp_address =

{ 44, "Knyvet Ave.", "Hamilton", "Ontario" };

The values of temp_address are:

Member Value
temp_address.street_no 44
temp_address.street_name address of string "Knyvet Ave."
temp_address.city address of string "Hamilton"
temp_address.prov address of string "Ontario"
temp_address.postal_code value depends on the storage class.

Note: The initial value of uninitialized structure members like
temp_address.postal_code depends on the storage class associated with the
member.

Declaring Structure Types and Variables
To define a structure type and a structure variable in one statement, put a

declarator and an optional initializer after the type definition. To specify a storage
class specifier for the variable, you must put the storage class specifier at the
beginning of the statement.

For example:
static struct {

int street_no;
char *street_name;
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char *city;
char *prov;
char *postal_code;

} perm_address, temp_address;

Because this example does not name the structure data type, perm_address and
temp_address are the only structure variables that will have this data type. Putting
an identifier after struct, lets you make additional variable definitions of this data
type later in the program.

The structure type (or tag) cannot have the volatile qualifier, but a member or a
structure variable can be defined as having the volatile qualifier.

For example:
static struct class1 {

char descript[20];
volatile long code;
short complete;

} volatile file1, file2;
struct class1 subfile;

This example qualifies the structures file1 and file2, and the structure member
subfile.code as volatile.

v “Initializing Structures” on page 54
v “Storage Class Specifiers” on page 34
v “volatile and const Qualifiers” on page 69

Declaring and Using Bit Fields in Structures
A structure or a C++ class can contain bit fields that allow you to

access individual bits. You can use bit fields for data that requires just a few bits of
storage. A bit field declaration contains a type specifier followed by an optional
declarator, a colon, a constant expression, and a semicolon. The constant
expression specifies how many bits the field reserves.

Bit fields with a length of 0 must be unnamed. Unnamed bit fields cannot be
referenced or initialized. A zero-width bit field causes the next field to be aligned on
the next container boundary where the container is the same size as the underlying
type as the bit field. A _Packed structure, which is a bit field of length 0, causes the
next field to align on the next byte boundary.

The padding to the next container boundary only takes place if the zero-width bit
field has the same underlying type as the preceding bit-field member. If the types
are different, the zero-width bit field has no effect.

The maximum bit-field length is implementation dependent.

For portability, do not use bit fields greater than 32 bits in size.

The following restrictions apply to bit fields. You cannot:
v Define an array of bit fields
v Take the address of a bit field
v Have a pointer to a bit field
v Have a reference to a bit field

Type Specifiers

Chapter 3. Declarations 55



In C, you can declare a bit field as type int, signed int, or unsigned int. Bit
fields of the type int are equivalent to those of type unsigned int.

For all implementations, the default integer type for a bit field is unsigned.

A bit field cannot have the const or volatile qualifier.

The following structure has three bit-field members kingdom, phylum, and genus,
occupying 12, 6, and 2 bits respectively:
struct taxonomy {

int kingdom : 12;
int phylum : 6;
int genus : 2;
};

Unlike C, C++ bit fields can be any integral type or enumeration type. When
you assign a value that is out of range to a bit field, the low-order bit pattern is
preserved and the appropriate bits are assigned.

If a series of bit fields does not add up to the size of an int, padding can take
place. The amount of padding is determined by the alignment characteristics of the
members of the structure.

z/OS C/C++ determines the amount of padding by the alignment
characteristics of the structure members. In some instances, bit fields can cross
word boundaries.

The following example demonstrates padding, and is valid for all implementations.
Suppose that an int occupies 4 bytes. The example declares the identifier kitchen
to be of type struct on_off:
struct on_off {

unsigned light : 1;
unsigned toaster : 1;
int count; /* 4 bytes */
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;
} kitchen ;

The structure kitchen contains eight members totalling 16 bytes. The following
table describes the storage that each member occupies:

Member Name Storage Occupied

light 1 bit

toaster 1 bit

(padding — 30 bits) To the next int boundary

count The size of an int (4 bytes)

ac 4 bits

(unnamed field)
1 bit, 4 bits

clock 1 bit

(padding — 23 bits) To the next int boundary (unnamed field)
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Member Name Storage Occupied

flag 1 bit

(padding — 31 bits) To the next int boundary

All references to structure fields must be fully qualified. For instance, you cannot
reference the second field by toaster. You must reference this field by
kitchen.toaster.

The following expression sets the light field to 1:
kitchen.light = 1;

When you assign to a bit field a value that is out of its range, the bit pattern is
preserved and the appropriate bits are assigned. The following expression sets the
toaster field of the kitchen structure to 0 because only the least significant bit is
assigned to the toaster field:

kitchen.toaster = 2;

Declaring a Packed Structure (z/OS C/C++): To qualify a C structure as
packed, use the _Packed qualifier on the structure declaration.

C++ does not support the _Packed qualifier. To change the alignment of C++
structures, use the #pragma pack directive, which is supported by both C and C++.
Please refer to “pack” on page 249 for information on this directive.

Packed and nonpacked structures cannot be assigned to each other, regardless of
their type.

v “Chapter 12. Classes” on page 283
v “Arrays” on page 86
v “Address &” on page 116
v “Pointers” on page 81
v “References” on page 92

Example Program Using Structures
The following program finds the sum of the integer numbers in a linked list:

CCNRAAS
/**
** Example program illustrating structures using linked lists
**/

#include <stdio.h>

struct record {
int number;
struct record *next_num;

};

int main(void)
{

struct record name1, name2, name3;
struct record *recd_pointer = &name1;
int sum = 0;
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name1.number = 144;
name2.number = 203;
name3.number = 488;

name1.next_num = &name2;
name2.next_num = &name3;
name3.next_num = NULL;

while (recd_pointer != NULL)
{

sum += recd_pointer->number;
recd_pointer = recd_pointer->next_num;

}
printf("Sum = %d\n", sum);

return(0);
}

The structure type record contains two members: the integer number and next_num,
which is a pointer to a structure variable of type record.

The record type variables name1, name2, and name3 are assigned the following
values:

Member Name Value
name1.number 144
name1.next_num The address of name2

name2.number 203
name2.next_num The address of name3

name3.number 488
name3.next_num NULL (Indicating the end of the linked list.)

The variable recd_pointer is a pointer to a structure of type record. It is initialized
to the address of name1 (the beginning of the linked list).

The while loop causes the linked list to be scanned until recd_pointer equals NULL.
The statement:
recd_pointer = recd_pointer->next_num;

advances the pointer to the next object in the list.

v “Chapter 4. Declarators” on page 73
v “Initializers” on page 79
v “Incomplete Types” on page 71
v “Dot Operator .” on page 107
v “Arrow Operator −>” on page 107

Alignment of Structures
Normal structure alignment aligns the structure members on their natural

boundaries and ends the structure on its natural boundary. The alignment of the
structure is that of its strictest member. The compiler performs normal alignment
when your program meets one of the following conditions:
v It does not specify the #pragma pack directive
v It specifies #pragma pack() before the structure declaration
v It specifies #pragma pack(full) before the structure declaration
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To change the alignment back to what it was before the last #pragma pack, use the
reset option.

Consider if, by default, the compiler packs data types along boundaries smaller than
those specified by #pragma pack. The compiler still aligns them along the smaller
boundaries. For example, the compiler always aligns type char along a 1-byte
boundary, regardless of the value of #pragma pack.

Consider when more than one #pragma pack directive appears in a structure defined
in an inlined function. In that case, the #pragma pack directive that is in effect at the
beginning of the structure takes precedence.

For information on packing C structures, see “_Packed Qualifier (z/OS C Only)” on
page 74. For information on alignment of unions, see “Alignment of Unions” on
page 64. For information how to use the #pragma pack directive to change
alignment, see “pack” on page 249.

Alignment of Nested Structures
A nested structure has the alignment that precedes its declaration, not the

alignment of the structure in which it is contained.
#pragma pack () // full alignment

struct nested {
int x;
char y;
int z;

};

#pragma pack(1) // 1-byte alignment
struct packedcxx{

char a;
short b;
struct nested s1; // full alignment

};

Unions
A union is an object similar to a structure except that all of its members start

at the same location in memory. A union can contain only one of its members at a
time. The members of a union can be of any data type.

The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its strictest member).

In C++, a union is a limited form of the class type. It can contain access
specifiers (public, protected, private), member data, and member functions,
including constructors and destructors. It cannot contain virtual member functions or
static data members. Default access of members in a union is public. A union
cannot be used as a base class and cannot be derived from a base class.

A C++ union member cannot be a class object that has a constructor,
destructor, or overloaded copy assignment operator. Also, a union cannot have
members of reference type. In C++, a member of a union cannot be declared with
the keyword static.
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v “Member Functions” on page 295
v “Constructors and Destructors Overview” on page 341
v “Virtual Functions” on page 333
v “Overloading Assignments” on page 274
v “static Storage Class Specifier” on page 42

Declaring a Union
A union type definition contains the union keyword followed by an identifier

(optional) and a brace-enclosed list of members.

A union definition has the following form:

�� union

�

identifier

{ member ; }
identifier

��

A union declaration has the same form as a union definition except that the
declaration has no brace-enclosed list of members.

The identifier is a tag given to the union specified by the member list. If you specify
a tag, any subsequent declaration of the union (in the same scope) can be made by
declaring the tag and omitting the member list. If you do not specify a tag, you must
put all variable definitions that refer to that union within the statement that defines
the data type.

The list of members provides the data type with a description of the objects that can
be stored in the union.

A union member definition has same form as a variable declaration.

You can reference one of the possible members of a union the same way as
referencing a member of a structure.

For example:
union {

char birthday[9];
int age;
float weight;
} people;

people.birthday[0] = '\n';

assigns '\n' to the first element in the character array birthday, a member of the
union people.

A union can represent only one of its members at a time. In the example, the union
people contains either age, birthday, or weight but never more than one of these.
The printf statement in the following example does not give the correct result
because people.age replaces the value assigned to people.birthday in the first
line:
#include <stdio.h>
#include <string.h>

Type Specifiers

60 C/C++ Language Reference



union {
char birthday[9];
int age;
float weight;

} people;

int main(void) {
strcpy(people.birthday, "03/06/56");
printf("%s\n", people.birthday);
people.age = 38;
printf("%s\n", people.birthday);

}

The output of the above example will be similar to the following:
03/06/56
&

Defining a Union Variable
A union variable definition has the following form:

��
storage_class_specifier

union union_data_type_name identifier �

�
= initialiaztion_value

��

You must declare the union data type before you can define a union having that
type.

You can define a union data type and a union of that type in the same statement by
placing the variable declarator after the data type definition.

You can only initialize the first member of a union.

The following example shows how you would initialize the first union member
birthday of the union variable people:
union {

char birthday[9];
int age;
float weight;
} people = {"23/07/57"};

To define union type and a union variable in one statement, put a declarator after
the type definition. The storage class specifier for the variable must go at the
beginning of the statement.

v “Storage Class Specifiers” on page 34
v “Unions” on page 59
v “Type Specifiers” on page 44
v “volatile and const Qualifiers” on page 69

Defining Packed Unions (z/OS)
To qualify a C union as packed, use _Packed.
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z/OS C++ does not support the _Packed qualifier. To change the alignment
of C++ unions, use the #pragma pack directive (which both C and C++ support). For
more information on this directive, see “pack” on page 249.

Packed and nonpacked unions cannot be assigned to each other, regardless of
their type.

The #pragma pack does not affect the memory layout of the union members. Each
member starts at offset zero. The #pragma pack directive does affect the total
alignment restriction of the whole union.

In the following example, each of the elements in the nonpacked n_array is of type
union uu:
union uu{

short a;
struct {

char x;
char y;
char z;

} b;
};

union uu n_array[2];
/* _Packed union is not supported for C++ */
_Packed union uu p_array[2];

Because it is not packed, each element in the nonpacked n_array has an alignment
restriction of 2 bytes. (The largest alignment requirement among the union
members is that of short a.) There is 1 byte of padding at the end of each element
to enforce this requirement.

In the packed array, p_array, each element is of type _Packed union uu. Because
every element aligned on the byte boundary, each element has a length of only 3
bytes, instead of the 4 bytes in the previous example.

The following equivalent C++ example uses the #pragma pack directive instead of
the _Packed qualifier:
union uu {

short a;
struct {

char x;
char y;
char z;

} b;
};

union uu n_array[2];
#pragma pack(pack)
union uu p_array[2];
#pragma pack(reset)

Anonymous Unions
An anonymous union is a union without a class name. It cannot be followed by a
declarator. An anonymous union is not a type; it defines an unnamed object and it
cannot have member functions.

z/OS C supports anonymous unions only when you use the
LANGLVL(COMMONC) compiler option.
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The member names of an anonymous union must be distinct from other names
within the scope in which the union is declared. You can use member names
directly in the union scope without any additional member access syntax.

For example, in the following code fragment, you can access the data members i
and cptr directly because they are in the scope containing the anonymous union.
Because i and cptr are union members and have the same address, you should
only use one of them at a time. The assignment to the member cptr will change
the value of the member i.
void f()
{
union { int i; char* cptr ; };
// .
// .
// .
i = 5;
cptr = "string_in_union"; // overrides the value 5
}

An anonymous union cannot have protected or private members. A global or
namespace anonymous union must be declared with the keyword static.

v “static Storage Class Specifier” on page 42
v “Member Functions” on page 295

Examples of Unions
The following example defines a union data type (not named) and a union variable
(named length). The member of length can be a long int, a float, or a double.
union {

float meters;
double centimeters;
long inches;

} length;

The following example defines the union type data as containing one member. The
member can be named charctr, whole, or real. The second statement defines two
data type variables: input and output.
union data {

char charctr;
int whole;
float real;

};
union data input, output;

The following statement assigns a character to input:
input.charctr = 'h';

The following statement assigns a floating-point number to member output:
output.real = 9.2;

The following example defines an array of structures named records. Each element
of records contains three members: the integer id_num, the integer type_of_input,
and the union variable input. input has the union data type defined in the previous
example.
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struct {
int id_num;
int type_of_input;
union data input;

} records[10];

The following statement assigns a character to the structure member input of the
first element of records:
records[0].input.charctr = 'g';

v “Initializers” on page 79
v “Structures” on page 51
v “Dot Operator .” on page 107
v “Arrow Operator −>” on page 107

Alignment of Unions
You can perform packing in a union. Each member starts at offset zero, and

the entire union spans as many bytes as its largest element. The #pragma pack
affects the total alignment restriction of the whole union. Consider the following
example:

Without Packing:
union uu {

short a;
struct {

char x;
char y;
char z;

} b;
};

union uu array[2];

First, consider the non-packed array. Each of its elements is of type union uu.
Since it is non-packed, every element has an alignment restriction of 2 bytes. The
largest alignment requirement among the union members is that of short a. There
is one byte of padding at the end of each element to enforce this requirement.

┌────── array[0] ───────┬────── array[1] ───────┐

³ ³ ³
³ a ³ ³ a ³ ³
³ x ³ y ³ z ³ ³ x ³ y ³ z ³ ³
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6 7 8

With #pragma pack(packed):
#pragma pack(packed)

union uu {
short a;
struct {

char x;
char y;
char z;

} b;
};

union uu p1_array[2];
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Now consider the packed array p1_array. Since the example specifies #pragma
pack(packed), the alignment restriction of every element is the byte boundary.
Therefore, each element has a length of only 3 bytes, as opposed to the 4 bytes of
the previous case.

┌── p_array[0] ───┬─── p_array[1] ──┐

³ ³ ³
³ a ³ ³ a ³ ³
³ x ³ y ³ z ³ x ³ y ³ z ³
└─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6

For information on structure alignment, see “Alignment of Structures” on page 58
and “Alignment of Nested Structures” on page 59. For information how to use the
#pragma pack directive to change alignment, see “pack” on page 249.

Examples:

In a header file, file.h:
#pragma pack(packed)

struct jeff{ /* this structure is packed */
float bill; /* along 1-byte boundaries */
int *chris;

}
#pragma pack(reset) /* reset to previous alignment rule*/

...

In a source file, file.cxx:
#pragma pack(full)

#include "file.h" // inside the header file,
// the alignment rule is set to 1-byte
// and then reset to the system default

struct dor{ // this structure is packed
double stephen; // using the system default alignment
long alex;

}

Enumerations
An enumeration data type represents a set of values that you declare. You can
define an enumeration data type and all variables that have that enumeration type
in one statement, or you can declare an enumeration type separately from the
definition of variables of that type. The identifier associated with the data type (not
an object) is called an enumeration tag.

v “Type Specifiers” on page 44

Declaring an Enumeration Data Type
An enumeration type declaration contains the enum keyword followed by an
optional identifier (the enumeration tag) and a brace-enclosed list of enumerators.
Commas separate each enumerator in the enumerator list.
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�� enum
identifier

�

,

{ enumerator } ; ��

The keyword enum, followed by the identifier, names the data type (like the tag on
a struct data type). The list of enumerators provides the data type with a set of
values.

In C, each enumerator represents an integer value. In C++, each
enumerator represents a value that can be converted to an integral value.

An enumerator has the form:

�� identifier
= integral_constant_expression

��

To conserve space, enumerations may be stored in spaces smaller than that of an
int.

Enumeration Constants
When you define an enumeration data type, you specify a set of identifiers that the
data type represents. Each identifier in this set is an enumeration constant.

The value of the constant is determined in the following way:

1. An equal sign (=) and a constant expression after the enumeration constant
gives an explicit value to the constant. The identifier represents the value of the
constant expression.

2. If no explicit value is assigned, the leftmost constant in the list receives the
value zero (0).

3. Identifiers with no explicitly assigned values receive the integer value that is one
greater than the value represented by the previous identifier.

In C, enumeration constants have type int.

In C++, each enumeration constant has a value that can be promoted to a
signed or unsigned integer value and a distinct type that does not have to be
integral. Use an enumeration constant anywhere an integer constant is allowed, or
for C++, anywhere a value of the enumeration type is allowed.

Each enumeration constant must be unique within the scope in which the
enumeration is defined. In the following example, second declarations of average
and poor cause compiler errors:
func()

{
enum score { poor, average, good };
enum rating { below, average, above };
int poor;

}

The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.
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enum grain { oats, wheat, barley, corn, rice };
/* 0 1 2 3 4 */

enum grain { oats=1, wheat, barley, corn, rice };
/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };
/* 0 10 11 20 21 */

It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend and
hold have the same integer value.
enum status { run, clear=5, suspend, resume, hold=6 };

/* 0 5 6 7 6 */

v “Integer Variables” on page 49
v “Integral and Floating-Point Promotions” on page 143

Defining Enumeration Variables
An enumeration variable definition has the following form:

��
storage_class_specifier

enum enumeration_data_type_name identifier �

�
= enumeration_constant

��

You must declare the enumeration data type before you can define a variable
having that type.

The initializer for an enumeration variable contains the = symbol followed by
an expression enumeration_constant. In C++, the initializer must have the same
type as the associated enumeration type.

The first line of the following example declares the enumeration grain. The second
line defines the variable g_food and gives g_food the initial value of barley (2).
enum grain { oats, wheat, barley, corn, rice };
enum grain g_food = barley;

The type specifier enum grain indicates that the value of g_food is a member of the
enumerated data type grain.

In C++, the enum keyword is optional when declaring a variable with
enumeration type. However, it is required when declaring the enumeration itself. For
example, both statements declare a variable of enumeration type:
enum grain g_food = barley;

grain cob_food = corn;

v “Storage Class Specifiers” on page 34
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Defining an Enumeration Type and Enumeration Objects
You can define a type and a variable in one statement by using a declarator and an
optional initializer after the type definition. To specify a storage class specifier for
the variable, you must put the storage class specifier at the beginning of the
declaration. For example:
register enum score { poor=1, average, good } rating = good;

C++ also lets you put the storage class immediately before the declarator
list. For example:
enum score { poor=1, average, good } register rating = good;

Either of these examples is equivalent to the following two declarations:
enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
rating has the storage class specifier register, the data type enum score, and the
initial value good.

Combining a data type definition with the definitions of all variables having that data
type lets you leave the data type unnamed. For example:
enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday } weekday;

defines the variable weekday, which can be assigned any of the specified
enumeration constants.

Example Program Using Enumerations
The following program receives an integer as input. The output is a sentence that
gives the French name for the weekday that is associated with the integer. If the
integer is not associated with a weekday, the program prints "C'est le mauvais
jour."

CCNRAAN
/**
** Example program using enumerations
**/

#include <stdio.h>

enum days {
Monday=1, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday

} weekday;

void french(enum days);

int main(void)
{

int num;

printf("Enter an integer for the day of the week. "
"Mon=1,...,Sun=7\n");

scanf("%d", &num);
weekday=num;
french(weekday);
return(0);

}
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void french(enum days weekday)
{

switch (weekday)
{

case Monday:
printf("Le jour de la semaine est lundi.\n");
break;

case Tuesday:
printf("Le jour de la semaine est mardi.\n");
break;

case Wednesday:
printf("Le jour de la semaine est mercredi.\n");
break;

case Thursday:
printf("Le jour de la semaine est jeudi.\n");
break;

case Friday:
printf("Le jour de la semaine est vendredi.\n");
break;

case Saturday:
printf("Le jour de la semaine est samedi.\n");
break;

case Sunday:
printf("Le jour de la semaine est dimanche.\n");
break;

default:
printf("C'est le mauvais jour.\n");

}
}

volatile and const Qualifiers
The volatile qualifier maintains consistency of memory access to data objects.

The volatile qualifier is useful for data objects having values that may be changed
in ways unknown to your program (such as the system clock). Portions of an
expression that reference volatile objects are not to be changed or removed.

The const qualifier explicitly declares a data object as a data item that cannot be
changed. Its value is set at initialization. You cannot use const data objects in
expressions requiring a modifiable lvalue. For example, a const data object cannot
appear on the left- hand side of an assignment statement.

These type qualifiers are only meaningful in expressions that are lvalues.

For a volatile or const pointer, you must put the keyword between the * and the
identifier. For example:
int * volatile x; /* x is a volatile pointer to an int */
int * const y = &z; /* y is a const pointer to the int variable z */

For a pointer to a volatile or const data object, the type specifier, qualifier, and
storage class specifier can be in any order. For example:
volatile int *x; /* x is a pointer to a volatile int */

or
int volatile *x; /* x is a pointer to a volatile int */

const int *y; /* y is a pointer to a const int */
or

int const *y; /* y is a pointer to a const int */

In the following example, the pointer to y is a constant. You can change the value
that y points to, but you cannot change the value of y:
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int * const y

In the following example, the value that y points to is a constant integer and cannot
be changed. However, you can change the value of y:
const int * y

For other types of volatile and const variables, the position of the keyword within
the definition (or declaration) is less important. For example:
volatile struct omega {

int limit;
char code;

} group;

provides the same storage as:
struct omega {

int limit;
char code;

} volatile group;

In both examples, only the structure variable group receives the volatile qualifier.
Similarly, if you specified the const keyword instead of volatile, only the structure
variable group receives the const qualifier. The const and volatile qualifiers when
applied to a structure, union, or class also apply to the members of the structure,
union, or class.

Although enumeration, class, structure, and union variables can receive the volatile
or const qualifier, enumeration, class, structure, and union tags do not carry the
volatile or const qualifier. For example, the blue structure does not carry the
volatile qualifier:
volatile struct whale {

int weight;
char name[8];

} beluga;
struct whale blue;

The keywords volatile and const cannot separate the keywords enum, class,
struct, and union from their tags.

You can declare or define a volatile or const function only if it is a C++ member
function. You can define or declare any function to return a pointer to a volatile or
const function.

You can put more than one qualifier on a declaration but you cannot specify the
same qualifier more than once on a declaration.

An item can be both const and volatile. In this case the item cannot be legitimately
modified by its own program but can be modified by some asynchronous process.

v “Lvalues and Rvalues” on page 99
v “Pointers” on page 81
v “Chapter 12. Classes” on page 283
v “Structures” on page 51
v “Unions” on page 59
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Incomplete Types
The following are incomplete types:
v Type void
v Array of unknown size
v Structure, union, or enumerations that have no definition

v Pointers to class types that are declared but not defined

v Classes that are declared but not defined

The following example is an incomplete type:
void *incomplete_ptr;

struct dimension linear; /* no previous definition of dimension */

void is an incomplete type that cannot be completed. Incomplete structure or union
and enumeration tags must be completed before being used to declare an object,
although you can define a pointer to an incomplete structure or union.

v “void Type” on page 50
v “Arrays” on page 86
v “Structures” on page 51
v “Unions” on page 59
v “Incomplete Class Declarations” on page 288
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Chapter 4. Declarators

A declarator designates a data object or function. Declarators appear in most data
definitions and declarations and in some type definitions.

In a declarator, you can specify the type of an object to be an array, a pointer, or a
reference. You can also perform initialization in a declarator.

A declarator has the form:

declarator

��

� pointer_operator

direct_declarator ��

direct_declarator

�� declarator_name
direct_declarator ( parameter_declaration_list )

const_volatile_qualifiers exception_specification
direct_declarator [ ]

constant_expression
( declarator )

��

pointer_operator

�� *
const_volatile_qualifiers

&
nested_name_specifier *

:: const_volatile_qualifiers

��

declarator_name

�� identifier
type_name

:: nested_name_specifier

��

The following variables or delimiters are only available in C++:

v exception_specification

v nested_name_specifier

v :: (scope resolution operator)

The const_volatile_qualifiers variable represents one or a combination of const and
volatile.

In C, you cannot declare or define a volatile or const function. C++
class member functions can be qualified with const or volatile.
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The z/OS C compiler implements the _Packed qualifier, and the z/OS C++
compiler implements the _Export qualifier.

The following table illustrate some examples of declarators:

Example Description

int owner owner is an int data object.
int *node node is a pointer to an int data object.
int names[126] names is an array of 126 int elements.
int *action( ) action is a function returning a pointer to an

int.
volatile int min min is an int that has the volatile qualifier.
int * volatile volume volume is a volatile pointer to an int.
volatile int * next next is a pointer to a volatile int.
volatile int * sequence[5] sequence is an array of five pointers to

volatile int objects.
extern const volatile int op_system_clock op_system_clock is a constant and volatile

integer with static storage duration and
external linkage.

_Packed struct struct_type s
s is a packed structure of type struct_type.

v “volatile and const Qualifiers” on page 69
v “Enumerations” on page 65
v “Pointers” on page 81
v “Arrays” on page 86
v “Structures” on page 51
v “Unions” on page 59
v “Exception Specifications” on page 412
v “Scope of Class Names” on page 287

_Packed Qualifier (z/OS C Only)

z/OS C stores data elements of structure and unions in memory on an
address boundary specific for that data type. For example, a double value is stored
in memory on a doubleword (8-byte) boundary. There may be gaps left in memory
between structure and union elements to align elements on their natural
boundaries. You can reduce the padding of bytes within a structure or union by
packing.

The _Packed qualifier removes padding between members of structures and affects
the alignment of unions whenever possible. However, the storage that is saved
using packed structures and unions may come at the expense of run-time
performance. Most machines access data more efficiently if the data aligns on
appropriate boundaries. With packed structures and unions, members are generally
not aligned on natural boundaries. The result is that operations using the
class-member access operators (. and ->) are slower.

Note: z/OS C/C++ aligns pointers on their natural boundaries, 4 bytes, even in
packed structures and unions.
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You can only use _Packed with structures or unions. If you use _Packed with other
types, z/OS C generates a warning message, and the qualifier has no effect on the
declarator it qualifies. Packed and nonpacked structures and unions have different
storage layouts.

You cannot perform comparisons between packed and nonpacked structures, or
unions of the same type. Packed and nonpacked structures or unions cannot be
assigned to each other, regardless of their type.

You cannot pass a packed union or packed structure as a function parameter if the
function expects a nonpacked version. If the function expects a packed structure or
a packed union, you cannot pass a nonpacked version as a function parameter.

If you specify the _Packed qualifier on a structure or union that contains a structure
or union as a member, the qualifier is not passed on to the contained structure or
union. See “Pragma Directives (#pragma)” on page 219 for more information on
#pragma pack.

__cdecl Keyword (z/OS C++ Only)

Use the __cdecl keyword to set linkage conventions for function calls in
C++ applications. You can use the __cdecl linkage keyword at any language level.
The __cdecl keyword instructs the compiler to read and write a parameter list by
using C linkage conventions.

To set the __cdecl calling convention for a function, place the linkage keyword
immediately before the function name or at the beginning of the declarator. For
example:
void __cdecl f();
char (__cdecl *fp) (void);

z/OS C++ allows the __cdecl keyword on member functions and nonmember
functions. These functions can be static or non-static. It also allows the keyword on
pointer-to-member function types and the typedef specifier.

Note: The compiler accepts both _cdecl and __cdecl (both single and double
underscore).

Following is an example:
// C++ nonmember functions
void __cdecl f1();
static void __cdecl f2();

// pointer to member function type
char (__cdecl *A::mfp) (void);

// typedef
typedef void (* _cdecl void_fcn)(int);
// C++ member functions
class A {

public:
void __cdecl func();
static void __cdecl func1();

}

// Template member functions
template <class T> X {

public:
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void __cdecl func();
static void __cdecl func1();

}

// Template functions
template <class T> T __cdecl foo(T i) {return i+1;}
template <class T> T static _cdecl foo2(T i) {return i+1;}

Semantics of __cdecl

The __cdecl linkage keyword only affects parameter passing; it does not
prevent function name mangling. Therefore, you can still overload functions with
non-default linkage. Note that you only acquire linkage by explicitly using the
__cdecl keyword. It overrides the linkage that it inherits from an extern "linkage"
specification.

Following is an example:
void __cdecl foo(int); // C linkage with name mangled
void __cdecl foo(char) // overload foo() with char is OK

void foo(int(*)());
// overload on linkage of function

void foo(int (__cdecl *)());
//pointer parameter is OK

extern "C++" {
void __cdecl foo(int);
// foo() has C linkage with name mangled

}

extern "C" {
void __cdecl foo(int);
// foo() has C linkage with name mangled

}

If the function is redeclared, the linkage keyword must appear in the first
declaration, otherwise z/OS issues an error diagnostic. Following are two examples:
int c_cf();
int __cdecl c_cf();
// Error 1251. The previous declaration did not have a linkage
specification

int __cdecl c_cf();
int c_cf();

// OK, the linkage is inherited from the first declaration

Examples of __cdecl Use

Prior to the Version 2 Release 4 OS/390 C++ compiler, the C++ function
pointer could not pass in the C function parameter list as the compiler did not
support __cdecl linkage. The following examples illustrate how you can pass in the
C parameter list by using the __cdecl linkage:

Example 1
/*------------------------------------------------------------------*/
/* C++ source file */
/*------------------------------------------------------------------*/
//
// C++ Application: passing a C++ function pointer to a C function
//
#include <stdio.h>

// C++ function declares with C calling convention
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void __cdecl callcxx() {
printf(" I am a C++ function\n");

}

// declare a function pointer with __cdecl linkage
void (__cdecl *p1)();

// declare an extern C function,
// accepting a__cdecl function pointer
extern "C" {

void CALLC(void (__cdecl *pp)());
}

// assign the function pointer to a __cdecl function
int main() {

p1 = callcxx;

// call the C function with the __cdecl function pointer
CALLC(p1);

}

Example 2
/*-----------------------------------------------------------------*/
/* C source file */
/*-----------------------------------------------------------------*/

/* */
/* C Routine: receiving a function pointer with C linkage */
/* */
#include <stdio.h>
extern void CALLC(void (*pp)()){

printf(" I am a C function\n");
(*pp)(); // call the function passed in

}

_Export Keyword (z/OS C++ only)

Use the _Export keyword (in C++ applications only) with a function name or
external variable to declare that it is be exported (made available to other modules).
For example:

int _Export anthony(float);

The above statement exports the function anthony, if you define the function within
the compilation unit. You must define the function in the same compilation unit in
which you use the _Export keyword.

z/OS C/C++ allows _Export only at file scope. You cannot use it in a typedef. You
cannot apply the _Export keyword to the return type of a function. For example, the
following declaration causes an error :
_Export int * a(); // error

The following declaration, however, would export a().
int * _Export a(); // error

The _Export keyword must immediately precede the function or object name. If the
_Export keyword is repeated in a declaration, z/OS C++ issues a warning when you
specify the info(gen) option.

Since _Export is part of the declarator, it affects only the closest identifier. In the
following declaration, _Export only modifies a:
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int _Export a, b;

You can use _Export at any language level.

The _Export keyword is an alternative to the #pragma export() directive. Note
however that their semantics are not equivalent. The _Export keyword can apply to
a class tag, object, or function and is generally easier to use. The #pragma export()
directive only applies to an object or function. If you attempted to export an
overloaded function or a class member function using the #pragma export()
directive as follows, you would receive a syntax error.
#pragma export(f) // syntax error since f has not been declared
void f();
void f(int);
class C1 { void f(); void f(int); };
class C2 { void f(); void f(int); class C3 { void f(); }; };

In addition, you need to specify the exact identifier that you want exported. For
example, #pragma export(f(int)) would export void f(int) for the above
example.

To export member functions, you may apply the _Export keyword to the function
declaration, but the function definition must not be inlined. For example:
class X {

public:
...
void _Export Print();
...

};

void X::Print() {
...

}

The above example will cause the function X::Print() to be exported.

It is not possible to export C++ inlined functions even with the #pragma
export() directive.

If the you apply the _Export keyword to a class, then z/OS C/C++ automatically
exports any static members of that class. The _Export keyword exports the public
interface of a class, so you should export all public methods and data members
using _Export. In the example below, both X::Print() and X::GetNext() will be
exported.

class _Export X {
public:

...
void static Print();
int GetNext();
...

};

void X:: static Print() {
...

}
int X::GetNext() {

...
}
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The above examples demonstrate that you can either export specific members of a
class or the entire class itself. Note that the _Export keyword can be applied to
class tags in nested class declarations.

The function main() cannot be exported. For a description of #pragma export, see
“export” on page 232.

Initializers
An initializer is an optional part of a data declaration that specifies an initial value of
a data object.

The initialization properties of each data type are described in the section for that
data type.

The initializer consists of the = symbol followed by an initial expression or a braced
list of initial expressions separated by commas. The number of initializers must not
be more than the number of elements to be initialized. The initial expression
evaluates to the first value of the data object.

To assign a value to an arithmetic or pointer type, use the simple initializer:
= expression. For example, the following data definition uses the initializer = 3 to
set the initial value of group to 3:
int group = 3;

For unions, structures, and aggregate classes (classes with no constructors, base
classes, virtual functions, or private or protected members), the set of initial
expressions must be enclosed in { } (braces) unless the initializer is a string literal.

If the initializer of a character string is a string literal, the { } are optional. Individual
expressions must be separated by commas, and groups of expressions can be
enclosed in braces and separated by commas.

In an array, structure, or union initialized using a brace-enclosed initializer list, any
members or subscripts that are not initialized are implicitly initialized to zero of the
appropriate type.

An initializer of the form (expression) can be used to initialize fundamental
types in C++. For example, the following two initializations are identical:
int group = 3;
int group(3);

You can also use the (expression) form to initialize C++ classes. However, the form
with parentheses and the form with the assignment operator are not identical. The
form with parenthesis calls the copy constructor of the class. The form with the
assignment operator calls the copy assignment operator of the class.

You can initialize variables at namespace scope with nonconstant
expressions. In C, you cannot do the same at global scope.

If your code jumps over declarations that contain initializations, the compiler
generates an error. For example, the following code is not valid:
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goto skiplabel; // error - jumped over declaration
int i = 3; // and initialization of i

skiplabel: i = 4;

You can initialize classes in external, static, and automatic definitions. The initializer
contains an = (equal sign) followed by a brace-enclosed, comma-separated list of
values. You do not need to initialize all members of a class.

In the following example, only the first eight elements of the array grid are explicitly
initialized. The remaining four elements that are not explicitly initialized are
initialized as if they were explicitly initialized to zero.
static short grid[3] [4] = {0, 0, 0, 1, 0, 0, 1, 1};

The initial values of grid are:

Element Value Element Value

grid[0] [0] 0 grid[1] [2] 1
grid[0] [1] 0 grid[1] [3] 1
grid[0] [2] 0 grid[2] [0] 0
grid[0] [3] 1 grid[2] [1] 0
grid[1] [0] 0 grid[2] [2] 0
grid[1] [1] 0 grid[2] [3] 0

v “Copy Assignment Operators” on page 363
v “Assignment Expressions” on page 134
v “Arrays” on page 86
v “char and wchar_t Type Specifiers” on page 45
v “Simple Type Specifiers” on page 44
v “Enumerations” on page 65
v “Floating-Point Variables” on page 47
v “Integer Variables” on page 49
v “Pointers” on page 81
v “Structures” on page 51
v “Unions” on page 59
v “Storage Class Specifiers” on page 34

C/C++ Data Mapping (z/OS)

The S/390 architecture has the following boundaries in its memory mapping:
v Byte
v Halfword
v Fullword
v Doubleword
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The code that is produced by the C/C++ compiler places data types on natural
boundaries. Some examples are:
v Byte boundary for char
v Byte boundary for decimal(n,p) (C only)
v Halfword boundary for short int
v Fullword boundary for int
v Fullword boundary for long int
v Fullword boundary for pointers
v Fullword boundary for float
v Doubleword boundary for double
v Doubleword boundary for long double

For each external defined variable, the z/OS C/C++ compiler defines a writeable
static data instance of the same name. The compiler places other external
variables, such as those in programs that you compiled with the NORENT compiler
option, in separate CSECTs that are based on their names.

Pointers
A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type except to a bit field or a reference.
Some common uses for pointers are:
v To access dynamic data structures such as linked lists, trees, and queues.
v To access elements of an array or members of a structure or C++ class.
v To access an array of characters as a string.
v To pass the address of a variable to a function. (In C++, you can also use a

reference to do this.) By referencing a variable through its address, a function
can change the contents of that variable.

v “Calling Functions and Passing Arguments” on page 164
v “References” on page 92

Declaring Pointers
The following example declares pcoat as a pointer to an object having type long:
extern long *pcoat;

If the keyword volatile appears before the *, the declarator describes a pointer to a
volatile object. If the keyword volatile comes between the * and the identifier, the
declarator describes a volatile pointer. The keyword const operates in the same
manner as the volatile keyword described. In the following example, pvolt is a
constant pointer to an object having type short:
short * const pvolt;

The following example declares pnut as a pointer to an int object having the
volatile qualifier:
extern int volatile *pnut;

The following example defines psoup as a volatile pointer to an object having type
float:
float * volatile psoup;

The following example defines pfowl as a pointer to an enumeration object of type
bird:
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enum bird *pfowl;

The next example declares pvish as a pointer to a function that takes no
parameters and returns a char object:
char (*pvish)(void);

v “volatile and const Qualifiers” on page 69

Assigning Pointers
When you use pointers in an assignment operation, you must ensure that the types
of the pointers in the operation are compatible.

The following example shows compatible declarations for the assignment operation:
float subtotal;
float * sub_ptr;
// ...
sub_ptr = &subtotal;
printf("The subtotal is %f\n", *sub_ptr);

The next example shows incompatible declarations for the assignment operation:
double league;
int * minor;
// ...
minor = &league; /* error */

v “Pointers” on page 81
v “Assignment Expressions” on page 134

Initializing Pointers
The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
time and speed as having type double and amount as having type pointer to a
double. The pointer amount is initialized to point to total:
double total, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first element
in the array. You can assign the address of the first element of an array to a pointer
by specifying the name of the array. The following two sets of definitions are
equivalent. Both define the pointer student and initialize student to the address of
the first element in section:
int section[80];
int *student = section;

is equivalent to:
int section[80];
int *student = &section[0];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer.

The following example defines the pointer variable string and the string constant
"abcd". The pointer string is initialized to point to the character a in the string
"abcd".
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char *string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The pointer weekdays[2], for example,
points to the string "Tuesday".
static char *weekdays[ ] =

{
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

A pointer can also be initialized to NULL using any integer constant expression that
evaluates to 0, for example char * a=0;. Such a pointer is a NULL pointer. It does
not point to any object.

v “Initializers” on page 79
v “Arrays” on page 86

Restrictions on Pointers
You cannot use pointers to reference bit fields or objects having the register

storage class specifier.

v “register Storage Class Specifier” on page 41
v “Restrictions on z/OS C Pointers”

Restrictions on z/OS C Pointers

The z/OS C compiler supports only the pointers that are obtained in one of
the following ways:
v Directly from a malloc/calloc/realloc call
v As an address of a data type (that is, &variable)
v From constants that refer to valid addresses or from the NULL constant
v Received as a parameter from another C function
v Directly from a call to a service in the z/OS Language Environment that allocates

storage, such as CEEGTST

Any bitwise manipulation of a pointer can result in undefined behavior.

Note: See z/OS C/C++ Programming Guide for details about receiving the
parameter list (argv) in C main, information on preparing your main routine to
receive parameters, and on C and C++ parameter passing considerations.

You cannot use pointers to reference bit fields or objects that have the register
storage class specifier.

Packed and nonpacked objects have different memory layouts. Consequently, a
pointer to a packed structure or union is incompatible with a pointer to a
corresponding nonpacked structure or union. As a result, comparisons and
assignments between pointers to packed and nonpacked objects are not valid.

You can, however, perform these assignments and comparisons with type casts. In
the following example, the cast operation lets you compare the two pointers, but
you must be aware that ps1 still points to a nonpacked object:
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int main(void)
{

_Packed struct ss *ps1;
struct ss *ps2;

.

.

.
ps1 = (_Packed struct ss *)ps2;

.

.

.
}

Using Pointers
Two operators are commonly used in working with pointers, the address (&)
operator and the indirection (*) operator. You can use the & operator to refer to the
address of an object. For example, the assignment in the following function assigns
the address of x to the variable p_to_int. The variable p_to_int has been defined
as a pointer:
void f(int x, int *p_to_int)
{

p_to_int = &x;
}

The * (indirection) operator lets you access the value of the object a pointer refers
to. The assignment in the following example assigns to y the value of the object
that p_to_float points to:
void g(float y, float *p_to_float) {

y = *p_to_float;
}

The assignment in the following example assigns the value of z to the variable that
*p_to_z references:
void h(char z, char *p_to_char) {

*p_to_char = z;
}

v “Address &” on page 116
v “Indirection *” on page 117

Pointer Arithmetic
You can perform a limited number of arithmetic operations on pointers. These
operations are:
v Increment and decrement
v Addition and subtraction
v Comparison
v Assignment

The increment (++) operator increases the value of a pointer by the size of the data
object the pointer refers to. For example, if the pointer refers to the second element
in an array, the ++ makes the pointer refer to the third element in the array.

The decrement (--) operator decreases the value of a pointer by the size of the
data object the pointer refers to. For example, if the pointer refers to the second
element in an array, the -- makes the pointer refer to the first element in the array.
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You can add an integer to a pointer but you cannot add a pointer to a pointer.

If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:
p = p + 2;

If you have two pointers that point to the same array, you can subtract one pointer
from the other. This operation yields the number of elements in the array that
separate the two addresses that the pointers refer to.

You can compare two pointers with the following operators: ==, !=, <, >, <=, and >=.

Pointer comparisons are defined only when the pointers point to elements of the
same array. Pointer comparisons using the == and != operators can be performed
even when the pointers point to elements of different arrays.

You can assign to a pointer the address of a data object, the value of another
compatible pointer or the NULL pointer.

v “Pointers” on page 81
v “Increment ++” on page 114
v “Arrays” on page 86
v “Decrement −−” on page 114
v “Chapter 5. Expressions and Operators” on page 95

Example Program Using Pointers
The following program contains pointer arrays:

CNNRAAQ
/********************************************************************
** Program to search for the first occurrence of a specified **
** character string in an array of character strings. **
********************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE 20

int main(void)
{

static char *names[ ] = { "Jim", "Amy", "Mark", "Sue", NULL };
char * find_name(char **, char *);
char new_name[SIZE], *name_pointer;

printf("Enter name to be searched.\n");
scanf("%s", new_name);
name_pointer = find_name(names, new_name);
printf("name %s%sfound\n", new_name,

(name_pointer == NULL) ? " not " : " ");
} /* End of main */

/********************************************************************
** Function find_name. This function searches an array of **
** names to see if a given name already exists in the array. **
** It returns a pointer to the name or NULL if the name is **
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** not found. **
** **
** char **arry is a pointer to arrays of pointers (existing names) **
** char *strng is a pointer to character array entered (new name) **
********************************************************************/

char * find_name(char **arry, char *strng)
{

for (; *arry != NULL; arry++) /* for each name */
{

if (strcmp(*arry, strng) == 0) /* if strings match */
return(*arry); /* found it! */

}
return(*arry); /* return the pointer */

} /* End of find_name */

Interaction with this program could produce the following sessions:

Output Enter name to be searched.

Input Mark

Output name Mark found

or:

Output Enter name to be searched.

Input Deborah

Output name Deborah not found

v “Chapter 4. Declarators” on page 73
v “volatile and const Qualifiers” on page 69
v “Initializers” on page 79
v “Address &” on page 116
v “Indirection *” on page 117

Arrays
An array is an ordered group of data objects. Each object is called an element. All
elements within an array have the same data type.

Array elements cannot be of function data type or, in C++, of reference data type.
You can, however, declare an array of pointers to functions.

v “Declaring Arrays”
v “Initializing Arrays” on page 88

Declaring Arrays
The array declarator contains an identifier followed by an optional subscript
declarator. An identifier preceded by an * (asterisk) is an array of pointers.

A subscript declarator has the form:
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�� [ ]
constant_expression

� [ constant_expression ]

��

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. Each bracketed expression, or subscript,
describes a different dimension and must be a constant expression.

The following example defines a one-dimensional array that contains four elements
having type char:
char
list[4];

The first subscript of each dimension is 0. The array list contains the elements:
list[0]
list[1]
list[2]
list[3]

The following example defines a two-dimensional array that contains six elements
of type int:
int
roster[3][2];

Multidimensional arrays are stored in row-major order. When elements are referred
to in order of increasing storage location, the last subscript varies the fastest. For
example, the elements of array roster are stored in the order:
roster[0][0]
roster[0][1]
roster[1][0]
roster[1][1]
roster[2][0]
roster[2][1]

In storage, the elements of roster would be stored as:

│ │ │

└───────────────┴───────────────┴
───────────────
n n n
│ │ │
roster[0][0] roster[0][1]
roster[1][0]

You can leave the first (and only the first) set of subscript brackets empty in
v Array definitions that contain initializations
v extern declarations
v Parameter declarations

In array definitions that leave the first set of subscript brackets empty, the initializer
determines the number of elements in the first dimension. In a one-dimensional
array, the number of initialized elements becomes the total number of elements. In
a multidimensional array, the initializer is compared to the subscript declarator to
determine the number of elements in the first dimension.
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An unsubscripted array name (for example, region instead of region[4]) represents
a pointer whose value is the address of the first element of the array, provided the
array has previously been declared.

Whenever an array is used in a context (such as a parameter) where it cannot be
used as an array, the identifier is treated as a pointer. The two exceptions are when
an array is used as an operand of the sizeof or the address (&) operator.

v “extern Storage Class Specifier” on page 37
v “Function Declarations” on page 154
v “sizeof (Size of an Object)” on page 117
v “Address &” on page 116

Initializing Arrays
The initializer for an array contains the = symbol followed by a comma-separated
list of constant expressions enclosed in braces ({ }). You do not need to initialize
all elements in an array. Elements that are not initialized (in extern and static
definitions only) receive the value 0 of the appropriate type.

Note: Array initializations can be either fully braced (with braces around each
dimension) or unbraced (with only one set of braces enclosing the entire set
of initializers).

Avoid placing braces around some dimensions and not around
others.

The following definition shows a completely initialized one-dimensional array:
static int number[3] = { 5, 7, 2 };

The array number contains the following values:

Element Value
number[0] 5
number[1] 7
number[2] 2

The following definition shows a partially initialized one- dimensional array:
static int number1[3] = { 5, 7 };

The values of number1 are:

Element Value
number1[0] 5
number1[1] 7
number1[2] 0

Instead of an expression in the subscript declarator defining the number of
elements, the following one-dimensional array definition defines one element for
each initializer specified:
static int
item[ ] = { 1, 2, 3, 4, 5 };

The compiler gives item the five initialized elements:

Element Value
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item[0] 1
item[1] 2
item[2] 3
item[3] 4
item[4] 5

You can initialize a one-dimensional character array by specifying:
v A brace-enclosed comma-separated list of constants, each of which can be

contained in a character
v A string constant (Braces surrounding the constant are optional)

Initializing a string constant places the null character (\0) at the end of the string if
there is room or if the array dimensions are not specified.

The following definitions show character array initializations:
static char name1[ ] = { 'J', 'a', 'n' };
static char name2[ ] = { "Jan" };
static char name3[4] = "Jan";

These definitions create the following elements:

Element Value Element Value Element Value

name1[0] J name2[0] J name3[0] J
name1[1] a name2[1] a name3[1] a
name1[2] n name2[2] n name3[2] n

name2[3] \0 name3[3] \0

Note that the following definition would result in the null character being lost:
static char name3[3]="Jan";

In C++, when initializing an array of characters with a string, the number of
characters in the string — including the terminating '\0' — must not exceed the
number of elements in the array.

You can initialize a multidimensional array by:
v Listing the values of all elements you want to initialize, in the order that the

compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

v Using braces to group the values of the elements you want initialized. You can
put braces around each element, or around any nesting level of elements. The
following definition contains two elements in the first dimension (you can consider
these elements as rows). The initialization contains braces around each of these
two elements:

static int month_days[2][12] =
{
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
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v Using nested braces to initialize dimensions and elements in a dimension
selectively.

The following definition explicitly initializes six elements in a 12-element array:
static int matrix[3][4] =

{
{1, 2},
{3, 4},
{5, 6}

};

The initial values of matrix are:

Element Value Element Value

matrix[0][0] 1 matrix[1][2] 0
matrix[0][1] 2 matrix[1][3] 0
matrix[0][2] 0 matrix[2][0] 5
matrix[0][3] 0 matrix[2][1] 6
matrix[1][0] 3 matrix[2][2] 0
matrix[1][1] 4 matrix[2][3] 0

You cannot have more initializers than the number of elements in the array.

v “Initializers” on page 79
v “Arrays” on page 86
v “extern Storage Class Specifier” on page 37
v “static Storage Class Specifier” on page 42

Example Programs Using Arrays
The following program defines a floating-point array called prices.

The first for statement prints the values of the elements of prices. The second for
statement adds five percent to the value of each element of prices, and assigns
the result to total, and prints the value of total.

CCNRAAO
/**
** Example of one-dimensional arrays
**/

#include <stdio.h>
#define ARR_SIZE 5

int main(void)
{

static float const prices[ARR_SIZE] = { 1.41, 1.50, 3.75, 5.00, .86 };
auto float total;
int i;

for (i = 0; i < ARR_SIZE; i++)
{

printf("price = $%.2f\n", prices[i]);
}

printf("\n");

for (i = 0; i < ARR_SIZE; i++)
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{
total = prices[i] * 1.05;
printf("total = $%.2f\n", total);

}

return(0);
}

This program produces the following output:
price = $1.41
price = $1.50
price = $3.75
price = $5.00
price = $0.86

total = $1.48
total = $1.57
total = $3.94
total = $5.25
total = $0.90

The following program defines the multidimensional array salary_tbl. A for loop
prints the values of salary_tbl.
/**
** Example of a multidimensional array
**/

#include <stdio.h>
#define ROW_SIZE 3
#define COLUMN_SIZE 5

int main(void)
{

static int
salary_tbl[ROW_SIZE][COLUMN_SIZE] =
{

{ 500, 550, 600, 650, 700 },
{ 600, 670, 740, 810, 880 },
{ 740, 840, 940, 1040, 1140 }

};
int grade , step;

for (grade = 0; grade < ROW_SIZE; ++grade)
for (step = 0; step < COLUMN_SIZE; ++step)
{

printf("salary_tbl[%d]
[%d] = %d\n", grade, step,

salary_tbl[grade] [step]);
}

return(0);
}

This program produces the following output:
salary_tbl[0] [0] = 500
salary_tbl[0] [1] = 550
salary_tbl[0] [2] = 600
salary_tbl[0] [3] = 650
salary_tbl[0] [4] = 700
salary_tbl[1] [0] = 600
salary_tbl[1] [1] = 670
salary_tbl[1] [2] = 740
salary_tbl[1] [3] = 810
salary_tbl[1] [4] = 880
salary_tbl[2] [0] = 740
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salary_tbl[2] [1] = 840
salary_tbl[2] [2] = 940
salary_tbl[2] [3] = 1040
salary_tbl[2] [4] = 1140

v “Arrays” on page 86
v “Pointers” on page 81
v “Array Subscript [ ] (Array Element Specification)” on page 106
v “String Literals” on page 29
v “Chapter 4. Declarators” on page 73
v “Initializers” on page 79
v “Chapter 6. Implicit Type Conversions” on page 143

Function Specifiers

The function specifiers inline and virtual are used only in C++ function
declarations.

The function specifier inline is used to make a suggestion to the compiler to
incorporate the code of a function into the code at the point of the call.

The function specifier virtual can only be used in nonstatic member function
declarations.

v “Function Declarations” on page 154
v “Inline Functions” on page 174
v “Virtual Functions” on page 333

References
A reference is an alias or an alternative name for an object. All operations applied
to a reference act on the object the reference refers to. The address of a reference
is the address of the aliased object.

A reference type is defined by placing the & after the type specifier. You must
initialize all references except function parameters when they are defined.

Because arguments of a function are passed by value, a function call does
not modify the actual values of the arguments. If a function needs to modify the
actual value of an argument, the argument must be passed by reference (as
opposed to being passed by value). Passing arguments by reference can be done
using either references or pointers. In C++, this is accomplished transparently.

Unlike C, C++ does not force you to use pointers if you want to pass
arguments by reference. For example:
int f(int&);
int main()
{

extern int i;
f(i);

}
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You cannot tell from the function call f(i) that the argument is being passed by
reference.

References to NULL are not allowed.

v “Objects” on page 34
v “Function Calls ( )” on page 104
v “Pointers” on page 81

Initializing References
The object that you use to initialize a reference must be of the same type as the
reference, or it must be of a type that is convertible to the reference type. If you
initialize a reference to a constant using an object that requires conversion, a
temporary object is created. In the following example, a temporary object of type
float is created:
int i;
const float& f = i; // reference to a constant float

When you initialize a reference with an object, you bind that reference to that
object.

Attempting to initialize a nonconstant reference with an object that requires a
conversion is an error.

Once a reference has been initialized, it cannot be modified to refer to another
object. For example:
int num1 = 10;
int num2 = 20;

int &RefOne = num1; // valid
int &RefOne = num2; // error, two definitions of RefOne
RefOne = num2; // assign num2 to num1
int &RefTwo; // error, uninitialized reference
int &RefTwo = num2; // valid

Note that the initialization of a reference is not the same as an assignment to a
reference. Initialization operates on the actual reference by initializing the reference
with the object it is an alias for. Assignment operates through the reference on the
object referred to.

A reference can be declared without an initializer:
v When it is used in an parameter declaration
v In the declaration of a return type for a function call
v In the declaration of class member within its class declaration
v When the extern specifier is explicitly used

You cannot have references to any of the following:
v Other references
v Bit fields
v Arrays of references
v Pointers to references

Direct Binding

Suppose a reference r of type T is initialized by an expression e of type U.

References
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The reference r is bound directly to e if the following statements are true:
v Expression e is an lvalue
v T is the same type as U, or T is a base class of U
v T has the same, or more, const or volatile qualifiers than U

The reference r is also bound directly to e if e can be implicitly converted to a type
such that the previous list of statements is true.

v “References” on page 92
v “Declaring Class Types” on page 283
v “Passing Arguments by Reference” on page 167
v “Pointers” on page 81
v “extern Storage Class Specifier” on page 37
v “volatile and const Qualifiers” on page 69
v “Chapter 4. Declarators” on page 73
v “Initializers” on page 79
v “Temporary Objects” on page 357
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Chapter 5. Expressions and Operators

Expressions are sequences of operators, operands, and punctuators that specify a
computation. The evaluation of expressions is based on the operators that the
expressions contain and the context in which they are used.

An expression can result in an lvalue, rvalue, or no value, and can produce side
effects in each case.

C++ operators can be defined to behave differently when applied to
operands of class type. This is called operator overloading. This chapter describes
the behavior of operators that are not overloaded.

v “Lvalues and Rvalues” on page 99
v “Overloading Operators” on page 271

Operator Precedence and Associativity
Two operator characteristics determine how operands group with operators:
precedence and associativity. Precedence is the priority for grouping different types
of operators with their operands. Associativity is the left-to-right or right-to-left order
for grouping operands to operators that have the same precedence. An operator’s
precedence is meaningful only if other operators with higher or lower precedence
are present. Expressions with higher-precedence operators are evaluated first.

For example, in the following statements, the value of 5 is assigned to both a and b
because of the right-to-left associativity of the = operator. The value of c is assigned
to b first, and then the value of b is assigned to a.
b = 9;
c = 5;
a = b = c;

Because the order of subexpression evaluation is not specified, you can explicitly
force the grouping of operands with operators by using parentheses.

In the expression
a + b * c / d

the * and / operations are performed before + because of precedence. b is
multiplied by c before it is divided by d because of associativity.

The following table lists the C and C++ language operators in order of precedence
and shows the direction of associativity for each operator.

The C++ scope resolution operator (::) has the highest precedence. The comma
operator has the lowest precedence. Operators that have the same rank have the
same precedence.

Table 3. Precedence and associativity of C and C++ operators

Rank Right Associative? Operator Function Usage

1 yes
global scope resolution

:: name_or_qualified name
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Table 3. Precedence and associativity of C and C++ operators (continued)

Rank Right Associative? Operator Function Usage

1
class or namespace scope

resolution

class_or_namespace :: member

2 member selection object . member

2 member selection pointer -> member

2 subscripting pointer [ expr ]

2 function call expr ( expr_list )

2 value construction type ( expr_list )

2 postfix increment lvalue --

2 postfix decrement lvalue ++

2 yes
type identification

typeid ( type )

2 yes
type identification at run

time

typeid ( expr )

2 yes
conversion checked at

compile time

static_cast < type > ( expr )

2 yes
conversion checked at run

time

dynamic_cast < type > ( expr )

2 yes
unchecked conversion

reinterpret_cast < type > ( expr )

2 yes
const conversion

const_cast < type > ( expr )

3 yes size of object in bytes sizeof ( expr )

3 yes size of type in bytes sizeof type

3 yes prefix increment ++ lvalue

3 yes prefix decrement -- lvalue

3 yes complement x expr

3 yes not ! expr

3 yes unary minus - expr

3 yes unary plus + expr

3 yes address of & lvalue

3 yes indirection or dereference * expr

3 yes
create (allocate memory)

new type

3 yes
create (allocate and initialize

memory)

new type ( expr_list ) type

3 yes
create (placement)

new type ( expr_list ) type ( expr_list )

3 yes
destroy (deallocate memory)

delete pointer

3 yes
destroy array

delete [ ] pointer

3 yes type conversion (cast) ( type ) expr

4 member selection object .* ptr_to_member

Operator Precedence and Associativity

96 C/C++ Language Reference



Table 3. Precedence and associativity of C and C++ operators (continued)

Rank Right Associative? Operator Function Usage

4 member selection object ->* ptr_to_member

5 multiplication expr * expr

5 division expr / expr

5 modulo (remainder) expr % expr

6 binary addition expr + expr

6 binary subtraction expr - expr

7 bitwise shift left expr << expr

7 bitwise shift right expr >> expr

8 less than expr < expr

8 less than or equal to expr <= expr

8 greater than expr > expr

8 greater than or equal to expr >= expr

9 equal expr == expr

9 not equal expr != expr

10 bitwise AND expr & expr

11 bitwise exclusive OR expr | expr

12 bitwise inclusive OR expr | expr

13 logical AND expr && expr

14 logical inclusive OR expr || expr

16 yes simple assignment lvalue = expr

16 yes multiply and assign lvalue *= expr

16 yes divide and assign lvalue /= expr

16 yes modulo and assign lvalue %= expr

16 yes add and assign lvalue += expr

16 yes subtract and assign lvalue -= expr

16 yes shift left and assign lvalue <<= expr

16 yes shift right and assign lvalue >>= expr

16 yes bitwise AND and assign lvalue &= expr

16 yes bitwise exclusive OR and assign lvalue |= expr

16 yes bitwise inclusive OR and assign lvalue |= expr

16 conditional expression expr ? expr : expr

17 yes
throw expression

throw expr

18 comma (sequencing) expr , expr

The order of evaluation for function call arguments or for the operands of binary
operators is not specified. Avoid writing such ambiguous expressions as:
z = (x * ++y) / func1(y);
func2(++i, x[i]);

In the example above, ++y and func1(y) might not be evaluated in the same order
by all C language implementations. If y had the value of 1 before the first

Operator Precedence and Associativity
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statement, it is not known whether or not the value of 1 or 2 is passed to func1().
In the second statement, if i had the value of 1, it is not known whether the first or
second array element of x[ ] is passed as the second argument to func2().

The order of grouping operands with operators in an expression containing more
than one instance of an operator with both associative and commutative properties
is not specified. The operators that have the same associative and commutative
properties are: *, +, &, |, and | (or ¬). The grouping of operands can be forced by
grouping the expression in parentheses.

Examples of Expressions and Precedence
The parentheses in the following expressions explicitly show how the compiler
groups operands and operators.
total = (4 + (5 * 3));
total = (((8 * 5) / 10) / 3);
total = (10 + (5/3));

If parentheses did not appear in these expressions, the operands and operators
would be grouped in the same manner as indicated by the parentheses. For
example, the following expressions produce the same output.
total = (4+(5*3));
total = 4+5*3;

Because the order of grouping operands with operators that are both associative
and commutative is not specified, the compiler can group the operands and
operators in the expression:
total = price + prov_tax +
city_tax;

in the following ways (as indicated by parentheses):
total = (price + (prov_tax + city_tax));
total = ((price + prov_tax) + city_tax);
total = ((price + city_tax) + prov_tax);

The grouping of operands and operators does not affect the result unless one
ordering causes an overflow and another does not. For example, if price = 32767,
prov_tax = -42, and city_tax = 32767, and all three of these variables have been
declared as integers, the third statement total = ((price + city_tax) +
prov_tax) will cause an integer overflow and the rest will not.

Because intermediate values are rounded, different groupings of floating-point
operators may give different results.

In certain expressions, the grouping of operands and operators can affect the result.
For example, in the following expression, each function call might be modifying the
same global variables.
a = b() + c() + d();

This expression can give different results depending on the order in which the
functions are called.

If the expression contains operators that are both associative and commutative and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.

Operator Precedence and Associativity
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a = b();
a += c();
a += d();

Lvalues and Rvalues
Every expression is either an lvalue or an rvalue.

An lvalue is an expression or function that represents an object that can be
examined or changed. A modifiable lvalue is an expression representing an object
that can be changed. It is typically the left operand in an assignment expression.
For example, arrays and const objects are not modifiable lvalues, but static int
objects are.

An rvalue is an expression that cannot have a value assigned to it. A function that
does not return a reference yields an rvalue. Rvalues always have complete types
or the void type.

Certain operators require lvalues for some of their operands. For example, all
assignment operators evaluate their right operand and assign that value to their left
operand. The left operand must evaluate to a reference to an object. The address
operator (&) requires an lvalue as an operand while the increment (++) and the
decrement (--) operators require a modifiable lvalue as an operand.

The following are examples of lvalues:

Expression Lvalue

x = 42 x

*ptr = newvalue *ptr

a++ a

int& f() The function call to f()

v “Arrays” on page 86
v “volatile and const Qualifiers” on page 69
v “static Storage Class Specifier” on page 42
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Type-Based Aliasing

The compiler follows the type-based aliasing rule in the ISO C standard
when the ANSIALIAS option is in effect. This rule, also known as the ANSI aliasing
rule, states that a pointer can only be dereferenced to an object of the same type. 1

The common coding practice of casting a pointer to a different type and then
dereferencing it violates this rule. Note that char pointers are an exception to this
rule. Refer to the description of the ANSIALIAS option in z/OS C/C++ User’s Guide
for additional information.

The compiler uses the type-based aliasing information to perform optimizations to
the generated code. Contravening the type-based aliasing rule can lead to
unexpected behavior, as demonstrated in the following example:

int *p;
double d = 0.0;

int *faa(double *g); /* cast operator inside the function */

void foo(double f) {
p = faa(&f); /* turning &f into a int ptr */
f += 1.0; /* compiler may purge this statement */
printf("f=%x\n", *p);

}

int *faa(double *g) { return (int*) g; } /* questionable cast; */
/* the function can be
/* in another compile
unit */

int main() {
foo(0.0);

}

In the above printf statement, *p can not be dereferenced to a double under the
ANSI aliasing rule. The compiler determines that the result of f += 1.0; is never

1. The C standard states:

An object shall have its stored value accessed only by an lvalue that has one of the following types:

v the declared type of the object,

v a qualified version of the declared type of the object,

v a type that is the signed or unsigned type corresponding to the declared type of the object,

v a type that is the signed or unsigned type corresponding to a qualified version of the declared type of the object,

v an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member
of a subaggregate or contained union), or

v a character type

The C++ standard states that if a program attempts to access the stored value of an object through an lvalue of other than one of
the following types, the behavior is undefined:

v the dynamic type of the object,

v a cv-qualified version of the dynamic type of the object,

v a type that is the signed or unsigned type corresponding to the dynamic type of the object,

v a type that is the signed or unsigned type corresponding to a cv-qualified version of the dynamic type of the object,

v an aggregate or union type that includes one of the aforementioned types among its members (including, recursively, a member
of a subaggregate or contained union),

v a type that is a (possible cv-qualified) base class type of the dynamic type of the object,

v a char or unsigned char type.

lvalue
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used subsequently. Thus, the optimizer may purge the statement from the
generated code. If you compile the above example with the OPTIMIZE and ANSIALIAS
options, the printf statement may output 0 (zero).

v “reinterpret_cast Operator” on page 109

Integer Constant Expressions
An integer compile-time constant is a value that is determined during compilation
and cannot be changed at run time. An integer compile-time constant expression is
an expression that is composed of constants and evaluated to a constant.

An integer constant expression is an expression that is composed of only the
following:
v literals
v enumerators
v const variables
v static data members of integral or enumeration types
v casts to integral types
v sizeof expressions

You must use an integer constant expression in the following situations:
v In the subscript declarator as the description of an array bound
v After the keyword case in a switch statement
v In an enumerator, as the numeric value of an enum constant
v In a bit-field width specifier
v In the preprocessor #if statement (Enumeration constants, address constants,

and sizeof cannot be specified in the preprocessor #if statement)

v “Literals” on page 23
v “Enumerations” on page 65
v “volatile and const Qualifiers” on page 69
v “Static Members” on page 303
v “Cast Expressions” on page 135
v “sizeof (Size of an Object)” on page 117

Primary Expressions
Primary expressions are literals, the C++ this pointer, parenthesized expressions,
names, and names qualified by the scope resolution operator (::).

v “Literals” on page 23
v “The this Pointer” on page 300

Parenthesized Expressions ( )
Use parentheses to explicitly force the order of expression evaluation. The following
expression does not contain any parentheses used for grouping operands and
operators. The parentheses surrounding weight, zipcode are used to form a
function call. Note how the compiler groups the operands and operators in the

lvalue
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expression according to the rules for operator precedence and associativity:

The following expression is similar to the previous expression, but it contains
parentheses that change how the operands and operators are grouped:

In an expression that contains both associative and commutative operators, you can
use parentheses to specify the grouping of operands with operators. The
parentheses in the following expression guarantee the order of grouping operands
with the operators:
x = f + (g + h);

C++ Scope Resolution Operator ::

The :: (scope resolution) operator is used to qualify hidden names so that
you can still use them. You can use the unary scope operator if a namespace
scope or global scope name is hidden by an explicit declaration of the same name
in a block or class. For example:
int count = 0;

int main(void) {

lvalue
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int count = 0;
::count = 1; // set global count to 1
count = 2; // set local count to 2
return 0;

}

The declaration of count declared in the main() function hides the integer named
count declared in global namespace scope. The statement ::count = 1 accesses
the variable named count declared in global namespace scope.

You can also use the class scope operator to qualify class names or class member
names. If a class member name is hidden, you can use it by qualifying it with its
class name and the class scope operator.

In the following example, the declaration of the variable X hides the class type X, but
you can still use the static class member count by qualifying it with the class type X
and the scope resolution operator.
#include <iostream>
using namespace std;

class X
{
public:

static int count;
};
int X::count = 10; // define static data member

int main ()
{

int X = 0; // hides class type X
cout << X::count << endl; // use static member of class X

}

v “Scope of Class Names” on page 287
v “Chapter 10. Namespaces” on page 261

Postfix Expressions
Postfix operators are operators that appear after their operands. A postfix
expression is a primary expression, or a primary expression that contains a postfix
operator. The following summarizes the available postfix operators:

Table 4. Precedence and associativity of postfix operators

Rank Right Associative? Operator Function Usage

2 member selection object . member

2 member selection pointer -> member

2 subscripting pointer [ expr ]

2 function call expr ( expr_list )

2 value construction type ( expr_list )

2 postfix increment lvalue --

2 postfix decrement lvalue ++

2 yes
type identification

typeid ( type )

lvalue
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Table 4. Precedence and associativity of postfix operators (continued)

Rank Right Associative? Operator Function Usage

2 yes
type identification at run

time

typeid ( expr )

2 yes
conversion checked at

compile time

static_cast < type > ( expr )

2 yes
conversion checked at run

time

dynamic_cast < type > ( expr )

2 yes
unchecked conversion

reinterpret_cast < type > ( expr )

2 yes
const conversion

const_cast < type > ( expr )

Function Calls ( )
A function call is an expression containing a simple type name and a parenthesized
argument list. The argument list can contain any number of expressions separated
by commas. It can also be empty.

For example:
stub()
overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

There are two kinds of function calls: ordinary function calls and C++ member
function calls. Any function may call itself except for the function main.

Type of a Function Call

The type of a function call expression is the return type of the function. This type
can either be a complete type, a reference type, or the type void. A function call is
an lvalue if and only if the type of the function is a reference.

Arguments and Parameters

A function argument is an expression that you use within the parenthesis of a
function call. A function parameter is an object or reference declared within the
parenthesis of a function declaration or definition. When you call a function, the
arguments are evaluated, and each parameter is initialized with the value of the
corresponding argument. The semantics of argument passing are identical to those
of assignment.

A function can change the values of its non-const parameters, but these changes
have no effect on the argument unless the parameter is a reference type.

If you want a function to change the value of a variable, pass a pointer or a
reference to the variable you want changed. When a pointer is passed as a
parameter, the pointer is copied; the object pointed to is not copied.

Linkage and Function Calls

lvalue
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In C only, if a function definition has external linkage and a return type of
int, calls to the function can be made before it is explicitly declared because an
implicit declaration of extern int func(); is assumed. This is not true for C++.

Type Conversions of Arguments

Arguments that are arrays and functions are converted to pointers before being
passed as function arguments.

Arguments passed to nonprototyped C functions undergo conversions: type short
or char parameters are converted to int, and float parameters to double. Use a
cast expression for other conversions.

The compiler compares the data types provided by the calling function with the data
types that the called function expects and performs necessary type conversions.
For example, when function funct is called, argument f is converted to a double,
and argument c is converted to an int:
char * funct (double d, int i);

/* ... */
int main(void)
{

float f;
char c;

funct(f, c) /* f is a double, c is an int */
return 0;

}

Evaluation Order of Arguments

The order in which arguments are evaluated is not specified. Avoid such calls as:
method(sample1, batch.process--, batch.process);

In this example, batch.process-- might be evaluated last, causing the last two
arguments to be passed with the same value.

Example of Function Calls

In the following example, main passes func two values: 5 and 7. The function func
receives copies of these values and accesses them by the identifiers: a and b. The
function func changes the value of a. When control passes back to main, the actual
values of x and y are not changed. The called function func only receives copies of
the values of x and y, not the variables themselves.
/**
** This example illustrates function calls
**/

#include <stdio.h>

void func (int a, int b)
{

a += b;
printf("In func, a = %d b = %d\n", a, b);

}

int main(void)
{

int x = 5, y = 7;

lvalue
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func(x, y);
printf("In main, x = %d y = %d\n", x, y);
return 0;

}

This program produces the following output:
In func, a = 12 b = 7
In main, x = 5 y = 7

F

v “Chapter 7. Functions” on page 153
v “Cast Expressions” on page 135
v “Pointers” on page 81
v “Program Linkage” on page 5

Array Subscript [ ] (Array Element Specification)
A postfix expression followed by an expression in [ ] (square brackets) specifies an
element of an array. The expression within the square brackets is referred to as a
subscript.

The expression a[b] is equivalent (by definition) to the expression *((a) + (b))
(and because addition is associative, it is also equivalent to b[a]). Between
expressions a and b, one must be a pointer to a type T, and the other must have
integral or enumeration type. The result of an array subscript is an lvalue. The
following example demonstrates this:
#include <stdio.h>

int main(void) {
int a[3] = { 10, 20, 30 };
printf("a[0] = %d\n", a[0]);
printf("a[1] = %d\n", 1[a]);
printf("a[2] = %d\n", *(2 + a));
return 0;

}

The following is the output of the above example:
a[0] = 10
a[1] = 20
a[2] = 30

The above restrictions on the types of expressions required by the subscript
operator, as well as the relationship between the subscript operator and pointer
arithmetic, do not apply if you overload operator[] of a class.

The first element of each array has the subscript 0. The expression contract[35]
refers to the 36th element in the array contract.

In a multidimensional array, you can reference each element (in the order of
increasing storage locations) by incrementing the right-most subscript most
frequently.

For example, the following statement gives the value 100 to each element in the
array code[4][3][6]:

lvalue
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for (first = 0; first < 4; ++first)
{
for (second = 0; second < 3; ++second)

{
for (third = 0; third < 6; ++third)

{
code[first][second][third] =
100;
}

}
}

v “Pointers” on page 81
v “Integer Variables” on page 49
v “Lvalues and Rvalues” on page 99
v “Arrays” on page 86
v “Overloading Subscripting” on page 277
v “Pointer Arithmetic” on page 84

Dot Operator .
The . (dot) operator is used to access class, structure, or union members. The
member is specified by a postfix expression, followed by a . (dot) operator, followed
by a possibly qualified identifier or a pseudo-destructor name. The postfix
expression must be an object of type class, struct or union. The name must be a
member of that object.

The value of the expression is the value of the selected member. If the postfix
expression and the name are lvalues, the expression value is also an lvalue.

Pseudo-destructors

A pseudo-destructor is a destructor of a nonclass type named type_name in
the following syntax diagram :

�� type_name :: x type_name
:: nested_name_specifier

nested_name_specifier template template_identifier :: x type_name
::

x type_name
:: nested_name_specifier

��

v “Chapter 13. Class Members and Friends” on page 293
v “Unions” on page 59
v “Structures” on page 51
v “Scope of Class Names” on page 287

Arrow Operator −>
The -> (arrow) operator is used to access class, structure or union members using
a pointer. A postfix expression, followed by an -> (arrow) operator, followed by a
possibly qualified identifier or a pseudo-destructor name, designates a member of
the object to which the pointer points. (A pseudo-destructor is a destructor of a
nonclass type.) The postfix expression must be a pointer to an object of type class,
struct or union. The name must be a member of that object.

lvalue
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The value of the expression is the value of the selected member. If the name is an
lvalue, the expression value is also an lvalue.

v “Pointers” on page 81
v “Chapter 13. Class Members and Friends” on page 293
v “Unions” on page 59
v “Structures” on page 51
v “Dot Operator .” on page 107

static_cast Operator

The static_cast operator converts a given expression to a specified type.

Syntax — static_cast

�� static_cast < Type > ( expression ) ��

The following is an example of the static_cast operator.
#include <iostream>
using namespace std;

int main() {
int j = 41;
int v = 4;
float m = j/v;
float d = static_cast<float>(j)/v;
cout << "m = " << m << endl;
cout << "d = " << d << endl;

}

The following is the output of the above example:
m = 10
d = 10.25

In this example, m = j/v; produces an answer of type int because both j and v are
integers. Conversely, d = static_cast<float>(j)/v; produces an answer of type
float. The static_cast operator converts variable j to a type float. This allows the
compiler to generate a division with an answer of type float. All static_cast
operators resolve at compile time and do not remove any const or volatile
modifiers.

Applying the static_cast operator to a null pointer will convert it to a null pointer
value of the target type.

You can explicitly convert a pointer of a type A to a pointer of a type B if A is a base
class of B. If A is not a base class of B, a compiler error will result.

You may cast an lvalue of a type A to a type B& if the following are true:

v A is a base class of B

v You are able to convert a pointer of type A to a pointer of type B

v The type B has the same or greater const or volatile qualifiers than type A

v A is not a virtual base class of B

The result is an lvalue of type B.

lvalue
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A pointer to member type can be explicitly converted into a different pointer to
member type if both types are pointers to members of the same class. This form of
explicit conversion may also take place if the pointer to member types are from
separate classes, however one of the class types must be derived from the other.

reinterpret_cast Operator

A reinterpret_cast operator handles conversions between unrelated types.

Syntax — reinterpret_cast

�� reinterpret_cast < Type > ( expression ) ��

The reinterpret_cast operator produces a value of a new type that has the same bit
pattern as its argument. You cannot cast away a const or volatile qualification. You
can explicitly perform the following conversions:
v A pointer to any integral type large enough to hold it
v A value of integral or enumeration type to a pointer
v A pointer to a function to a pointer to a function of a different type
v A pointer to an object to a pointer to an object of a different type
v A pointer to a member to a pointer to a member of a different class or type, if the

types of the members are both function types or object types

A null pointer value is converted to the null pointer value of the destination type.

Given an lvalue expression of type T and an object x, the following two conversions
are synonymous:
v reinterpret_cast<T&>(x)
v *reinterpret_cast<T*>(&x)

ISO C++ also supports C-style casts. The two styles of explicit casts have different
syntax but the same semantics, and either way of reinterpreting one type of pointer
as an incompatible type of pointer is usually invalid. The reinterpret_cast operator,
as well as the other named cast operators, is more easily spotted than C-style
casts, and highlights the paradox of a strongly typed language that allows explicit
casts.

The C++ compiler detects and quietly fixes most but not all violations. It is important
to remember that even though a program compiles, its source code may not be
completely correct. On some platforms, performance optimizations are predicated
on strict adherence to ISO aliasing rules. Although the C++ compiler tries to help
with type-based aliasing violations, it cannot detect all possible cases.

The following example violates the aliasing rule, but will execute as expected when
compiled unoptimized in C++ or in K&R C or with NOANSIALIAS. It will also
successfully compile optimized in C++ with ANSIALIAS, but will not necessarily
execute as expected. The offending line 7 causes an old or uninitialized value for x
to be printed.
1 extern int y = 7.;
2
3 void main() {
4 float x;
5 int i;

lvalue
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6 x = y;
7 i = *(int *) &x;
8 printf("i=%d. x=%f.\n", i, x);
9 }

The next code example contains an incorrect cast that the compiler cannot even
detect because the cast is across two different files.
1 /* separately compiled file 1 */
2 extern float f;
3 extern int * int_pointer_to_f = (int *) &f; /* suspicious cast */
4
5 /* separately compiled file 2 */
6 extern float f;
7 extern int * int_pointer_to_f;
8 f = 1.0;
9 int i = *int_pointer_to_f; /* no suspicious cast but wrong */

In line 8, there is no way for the compiler to know that f = 1.0 is storing into the
same object that int i = *int_pointer_to_f is loading from.

v “Type-Based Aliasing” on page 100

const_cast Operator

A const_cast operator is used to add or remove a const or volatile modifier
to or from a type.

Syntax — const_cast

�� const_cast < Type > ( expression ) ��

Type and the type of expression may only differ with respect to their const and
volatile qualifiers. Their cast is resolved at compile time. A single const_cast
expression may add or remove any number of const or volatile modifiers.

The result of a const_cast expression is an rvalue unless Type is a reference type.
In this case, the result is an lvalue.

Types can not be defined within const_cast.

The following demonstrates the use of the const_cast operator:
#include <iostream>
using namespace std;

void f(int* p) {
cout << *p << endl;

}

int main(void) {
const int a = 10;
const int* b = &a;

// Function f() expects int*, not const int*
// f(b);
int* c = const_cast<int>(b);
f(c);

lvalue
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// Lvalue is const
// *b = 20;

// Undefined behavior
// *c = 30;

int a1 = 40;
const int* b1 = &a1;
int* c1 = const_cast<int>(b1);

// Integer a1, the object referred to by c1, has
// not been declared const
*c1 = 50;

return 0;
}

The compiler will not allow the function call f(b). Function f() expects a pointer to
an int, not a const int. The statement int* c = const_cast<int>(b) returns a
pointer c that refers to a without the const qualification of a. This process of using
const_cast to remove the const qualification of an object is called casting away
constness. Consequently the compiler will allow the function call f(c).

The compiler would not allow the assignment *b = 20 because b points to an object
of type const int. The compiler will allow the *c = 30, but the behavior of this
statement is undefined. If you cast away the constness of an object that has been
explicitly declared as const, and attempt to modify it, the results are undefined.

However, if you cast away the constness of an object that has not been explicitly
declared as const, you can modify it safely. In the above example, the object
referred to by b1 has not been declared const, but you cannot modify this object
through b1. You may cast away the constness of b1 and modify the value to which it
refers.

dynamic_cast Operator

The dynamic_cast operator performs type conversions at run time.

The expression dynamic_cast<T>(v) converts the expression v to type T. Type T
must be a pointer or reference to a complete class type or a pointer to void. If T is a
pointer and the dynamic_cast operator fails, the operator returns a null pointer of
type T. If T is a reference and the dynamic_cast operator fails, the operator throws
the exception std::bad_cast. You can find this class in the standard library header
<typeinfo>.

If T is a void pointer, then dynamic_cast will return the starting address of the
object pointed to by v. The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual xA() { };

};

struct B : A { };

int main() {
B bobj;
A* ap = &bobj;

lvalue
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void * vp = dynamic_cast<void>(ap);
cout << "Address of vp : " << vp << endl;
cout << "Address of bobj: " << &bobj << endl;

}

The output of this example will be similar to the following. Both vp and &bobj will
refer to the same address:
Address of vp : 12FF6C
Address of bobj: 12FF6C

The primary purpose for the dynamic_cast operator is to perform type-safe
downcasts. A downcast is the conversion of a pointer or reference to a class A to
pointer or reference to a class B, where class A is a base class of B. The problem
with downcasts is that a pointer of type A* can and must point to any object of a
class that has been derived from A. The dynamic_cast operator ensures that if you
convert a pointer of class A to a pointer of a class B, the object that A points to
belongs to class B or a class derived from B.

The following example demonstrates the use of the dynamic_cast operator:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "Class A" << endl; }

};

struct B : A {
virtual void f() { cout << "Class B" << endl; }

};

struct C : A {
virtual void f() { cout << "Class C" << endl; }

};

void f(A* arg) {
B* bp = dynamic_cast<b>(arg);
C* cp = dynamic_cast<c>(arg);

if (bp)
bp->f();

else if (cp)
cp->f();

else
arg->f();

};

int main() {
A aobj;
C cobj;
A* ap = &cobj;
A* ap2 = &aobj;
f(ap);
f(ap2);

}

The following is the output of the above example:
Class C
Class A

The function f() determines whether the pointer arg points to an object of type A, B,
or C. The function does this by trying to convert arg to a pointer of type B, then to a
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pointer of type C, with the dynamic_cast operator. If the dynamic_cast operator
succeeds, it returns a pointer that points to the object denoted by arg. If
dynamic_cast fails, it returns 0.

You may perform downcasts with the dynamic_cast operator only on polymorphic
classes. In the above example, all the classes are polymorphic because class A has
a virtual function. The dynamic_cast operator uses the run-time type information
generated from polymorphic classes.

You must indicate that you want the compiler to generate run-time type
information with a compiler option.

Unary Expressions
A unary expression contains one operand and a unary operator. All unary operators
have the same precedence and have right- to-left associativity.

As indicated in the following descriptions, the usual arithmetic conversions are
performed on the operands of most unary expressions.

The following table summarizes the operators for unary expressions:

Table 5. Precedence and associativity of unary operators

Rank Right Associative? Operator Function Usage

3 yes size of object in bytes sizeof ( expr )

3 yes size of type in bytes sizeof type

3 yes prefix increment ++ lvalue

3 yes prefix decrement -- lvalue

3 yes complement x expr

3 yes not ! expr

3 yes unary minus - expr

3 yes unary plus + expr

3 yes address of & lvalue

3 yes indirection or dereference * expr

3 yes
create (allocate memory)

new type

3 yes
create (allocate and initialize

memory)

new type ( expr_list ) type

3 yes
create (placement)

new type ( expr_list ) type ( expr_list )

3 yes
destroy (deallocate memory)

delete pointer

3 yes
destroy array

delete [ ] pointer

3 yes type conversion (cast) ( type ) expr

In addition, postfix expressions are also unary expressions.

v “Increment ++” on page 114

lvalue
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v “Decrement −−”
v “Unary Plus +” on page 115
v “Unary Minus −” on page 115
v “Arithmetic Conversions” on page 149

Increment ++
The ++ (increment) operator adds 1 to the value of a scalar operand, or if the
operand is a pointer, increments the operand by the size of the object to which it
points. The operand receives the result of the increment operation. The operand
must be a modifiable lvalue of arithmetic or pointer type.

You can put the ++ before or after the operand. If it appears before the operand, the
operand is incremented. The incremented value is then used in the expression. If
you put the ++ after the operand, the value of the operand is used in the expression
before the operand is incremented. For example:
play = ++play1 + play2++;

is similar to the following expressions; play2 is altered before play:
int temp, temp1, temp2;

temp1 = play1;
temp2 = play2 + 1;
play1 = play1 + 1;
temp = temp1 + temp2;
play2 = temp2;
play = temp;

The result has the same type as the operand after integral promotion.

The usual arithmetic conversions on the operand are performed.

v “Pointer Arithmetic” on page 84
v “Lvalues and Rvalues” on page 99
v “Arithmetic Conversions” on page 149

Decrement −−
The -- (decrement) operator subtracts 1 from the value of a scalar operand, or if
the operand is a pointer, decreases the operand by the size of the object to which it
points. The operand receives the result of the decrement operation. The operand
must be a modifiable lvalue.

You can put the -- before or after the operand. If it appears before the operand, the
operand is decremented, and the decremented value is used in the expression. If
the -- appears after the operand, the current value of the operand is used in the
expression and the operand is decremented.

For example:
play = --play1 + play2--;

is similar to the following expressions; play2 is altered before play:
int temp, temp1, temp2;

temp1 = play1;
temp2 = play2 - 1;

Unary Expressions
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play1 = play1 - 1;
temp = temp1 + temp2;
play2 = temp2;
play = temp;

The result has the same type as the operand after integral promotion, but is not an
lvalue.

The usual arithmetic conversions are performed on the operand.

v “Pointer Arithmetic” on page 84
v “Lvalues and Rvalues” on page 99
v “Arithmetic Conversions” on page 149

Unary Plus +
The + (unary plus) operator maintains the value of the operand. The operand can
have any arithmetic type or pointer type. The result is not an lvalue.

The result has the same type as the operand after integral promotion.

Note: Any plus sign in front of a constant is not part of the constant.

v “Lvalues and Rvalues” on page 99

Unary Minus −
The - (unary minus) operator negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.

The result has the same type as the operand after integral promotion.

Note: Any minus sign in front of a constant is not part of the constant.

v “Lvalues and Rvalues” on page 99

Logical Negation !
The ! (logical negation) operator determines whether the operand evaluates to 0
(false) or nonzero (true).

The expression yields the value 1 (true) if the operand evaluates to 0, and
yields the value 0 (false) if the operand evaluates to a nonzero value.

The expression yields the value true if the operand evaluates to false (0),
and yields the value false if the operand evaluates to true (nonzero). The operand
is implicitly converted to bool and the type of the result is bool.

The following two expressions are equivalent:
!right;
right == 0;

Unary Expressions
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v “Lvalues and Rvalues” on page 99
v “Boolean Variables” on page 46

Bitwise Negation ˜
The ˜ (bitwise negation) operator yields the bitwise complement of the operand. In
the binary representation of the result, every bit has the opposite value of the same
bit in the binary representation of the operand. The operand must have an integral
type. The result has the same type as the operand but is not an lvalue.

Suppose x represents the decimal value 5. The 16-bit binary representation of x is:
0000000000000101

The expression ˜x yields the following result (represented here as a 16-bit binary
number):
1111111111111010

Note that the ˜ character can be represented by the trigraph ??-.

The 16-bit binary representation of ˜0 is:
1111111111111111

v “Lvalues and Rvalues” on page 99
v “Trigraph Sequences” on page 15

Address &
The & (address) operator yields a pointer to its operand. The operand must be an
lvalue, a function designator, or a qualified name. It cannot be a bit field, nor can it
have the storage class register.

You may take the address of a register variable.

If the operand is an lvalue or function, the resulting type is a pointer to the
expression type. For example, if the expression has type int, the result is a pointer
to an object having type int.

If the operand is a qualified name and the member is not static, the result is a
pointer to a member of class and has the same type as the member. The result is
not an lvalue.

If p_to_y is defined as a pointer to an int and y as an int, the following expression
assigns the address of the variable y to the pointer p_to_y :
p_to_y = &y;

You can use the & operator with overloaded functions only in an initialization
or assignment where the left side uniquely determines which version of the
overloaded function is used.

v “Lvalues and Rvalues” on page 99
v “Chapter 7. Functions” on page 153
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v “Pointers” on page 81
v “Overloading Functions” on page 269
v “register Storage Class Specifier” on page 41

Indirection *
The * (indirection) operator determines the value referred to by the pointer-type
operand. The operand cannot be a pointer to an incomplete type. The operation
yields an lvalue or a function designator if the operand points to a function. Arrays
and functions are converted to pointers.

The type of the operand determines the type of the result. For example, if the
operand is a pointer to an int, the result has type int.

Do not apply the indirection operator to any pointer that contains an address that is
not valid, such as NULL. The result is not defined.

If p_to_y is defined as a pointer to an int and y as an int, the expressions:
p_to_y = &y;
*p_to_y = 3;

cause the variable y to receive the value 3.

v “Arrays” on page 86
v “Chapter 7. Functions” on page 153
v “Pointers” on page 81

sizeof (Size of an Object)
The sizeof operator yields the size in bytes of the operand. Types cannot be
defined in a sizeof expression. The sizeof operation cannot be performed on
v A bit field
v A function
v An undefined structure or class
v An incomplete type (such as void)

The operand can be the parenthesized name of a type or expression.

The compiler must be able to evaluate the size at compile time. The expression is
not evaluated; there are no side effects. For example, the value of b is 5 from
initialization to the end of program run time:
#include <stdio.h>

int main(void){
int b = 5;
sizeof(b++);
return 0;

}

The result is an integer constant.

The size of a char object is the size of a byte. For example, if a variable x has type
char, the expression sizeof(x) always evaluates to 1.

The result of a sizeof operation has type size_t, which is an unsigned integral type
defined in the <stddef.h> header.
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The size of an object is determined on the basis of its definition. The sizeof
operator does not perform any conversions. If the operand contains operators that
perform conversions, the compiler does take these conversions into consideration.
The following expression causes the usual arithmetic conversions to be performed.
The result of the expression x + 1 has type int (if x has type char, short, or int or
any enumeration type) and is equivalent to sizeof(int):
sizeof (x + 1);

Except in preprocessor directives, you can use a sizeof expression wherever an
integral constant is required. One of the most common uses for the sizeof operator
is to determine the size of objects that are referred to during storage allocation,
input, and output functions.

Another use of sizeof is in porting code across platforms. You should use the
sizeof operator to determine the size that a data type represents. For example:
sizeof(int);

Using the sizeof operator with decimal(n,p) results in the total number of
bytes that are occupied by the decimal type. z/OS C/C++ implements decimal data
types using the native packed decimal format. Each digit occupies half a byte. The
sign occupies an additional half byte. The following example gives you a result of 6
bytes:
sizeof(decimal(10,2));

The result of a sizeof expression depends on the type it is applied to:

An array The result is the total number of bytes in the array. For example, in
an array with 10 elements, the size is equal to 10 times the size of
a single element. The compiler does not convert the array to a
pointer before evaluating the expression.

A class The result is always nonzero, and is equal to the number of bytes
in an object of that class including any padding required for placing
class objects in an array.

A reference The result is the size of the referenced object.

v “Integer Constant Expressions” on page 101
v “Arrays” on page 86
v “Chapter 12. Classes” on page 283
v “References” on page 92

digitsof and precisionof (z/OS C Only)

The digitsof and precisionof operators yield information about decimal
types or an expressions of the decimal type. The <decimal.h> header file defines
the digitsof and precisionof macros.

The digitsof operator gives the number of significant digits of an object, and
precisionof gives the number of decimal digits. That is,

digitsof(decimal(n,p)) = n
precisionof(decimal(n,p)) = p

Unary Expressions
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The results of the digitsof and precisionof operators are integer constants. See
“Fixed-Point Decimal Constants (z/OS C Only)” on page 27 and“Fixed-Point
Decimal Data Types (z/OS C Only)” on page 48 for more information about decimal
types.

C++ new Operator

The new operator provides dynamic storage allocation. The syntax for an
allocation expression containing the new operator is:

��
::

new
( argument_list )

( type )
new_type

�

�
( )

initial_value

��

If you prefix new with the scope resolution operator (::), the global operator new()
is used. If you specify an argument_list, the overloaded new operator that
corresponds to that argument_list is used. The type is an existing built-in or
user-defined type. A new_type is a type that has not already been defined and can
include type specifiers and declarators.

An allocation expression containing the new operator is used to find storage in free
store for the object being created. The new expression returns a pointer to the
object created and can be used to initialize the object. If the object is an array, a
pointer to the initial element is returned.

You can use set_new_handler() only to specify what new does when it fails.

You cannot use the new operator to allocate function types, void, or incomplete
class types because these are not object types. However, you can allocate pointers
to functions with the new operator. You cannot create a reference with the new
operator.

When the object being created is an array, only the first dimension can be a general
expression. All subsequent dimensions must be constant integral expressions. The
first dimension can be a general expression even when an existing type is used.
You can create an array with zero bounds with the new operator. For example:
char * c = new
char[0];

In this case, a pointer to a unique object is returned.

An object created with operator new() or operator new[]() exists until the operator
delete() or operator delete[]() is called to deallocate the object’s memory. A delete
operator or a destructor will not be implicitly called for an object created with a new
that has not been explicitly deallocated before the end of the program.

If parentheses are used within a new type, parentheses should also surround the
new type to prevent syntax errors.

In the following example, storage is allocated for an array of pointers to functions:
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void f();
void g();

int main(void)
{

void (**p)(), (**q)();
// declare p and q as pointers to pointers to void functions
p = new (void (*[3])());
// p now points to an array of pointers to functions
q = new void(*[3])(); // error
// error - bound as 'q = (new void) (*[3])();'
p[0] = f; // p[0] to point to function f
q[2] = g; // q[2] to point to function g
p[0](); // call f()
q[2](); // call g()
return (0);

}

However, the second use of new causes an erroneous binding of q = (new void)
(*[3])().

The type of the object being created cannot contain class declarations, enumeration
declarations, or const or volatile types. It can contain pointers to const or volatile
objects.

For example, const char* is allowed, but char* const is not.

Additional arguments can be supplied to new by using the argument_list, also
called the placement syntax. If placement arguments are used, a declaration of
operator new() or operator new[]() with these arguments must exist. For example:
#include <new>
using namespace std;

class X
{
public:

void* operator new(size_t,int, int){ /* ... */ }
};

// ...

int main ()
{

X* ptr = new(1,2) X;
}

v “C++ Scope Resolution Operator ::” on page 102
v “Free Store” on page 353
v “set_new_handler() — Set Behavior for new Failure” on page 121
v “C++ delete Operator” on page 122
v “Constructors and Destructors Overview” on page 341
v “Objects” on page 34
v “Integer Constant Expressions” on page 101

Initializing Objects Created with the new Operator
You can initialize objects created with the new operator in several ways. For

nonclass objects, or for class objects without constructors, a new initializer
expression can be provided in a new expression by specifying ( expression ) or ().
For example:
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double* pi = new double(3.1415926);
int* score = new int(89);
float* unknown = new float();

If a class does not have a default constructor, the new initializer must be provided
when any object of that class is allocated. The arguments of the new initializer must
match the arguments of a constructor.

You cannot specify an initializer for arrays. You can initialize an array of class
objects only if the class has a default constructor. The constructor is called to
initialize each array element (class object).

Initialization using the new initializer is performed only if new successfully allocates
storage.

v “Free Store” on page 353
v “Constructors and Destructors Overview” on page 341

set_new_handler() — Set Behavior for new Failure
When the new operator creates a new object, it calls the operator new() or

operator new[]() function to obtain the needed storage.

When new cannot allocate storage to create a new object, it calls a new handler
function if one has been installed by a call to set_new_handler(). The
std::set_new_handler() function is declared in the header <new>. Use it to call a
new handler you have defined or the default new handler.

Your new handler must perform one of the following:
v obtain more storage for memory allocation, then return
v throw an exception of type std::bad_alloc or a class derived from

std::bad_alloc
v call either abort() or exit()

The set_new_handler() function has the prototype:
typedef void(*PNH)();
PNH set_new_handler(PNH);

set_new_handler() takes as an argument a pointer to a function (the new handler),
which has no arguments and returns void. It returns a pointer to the previous new
handler function.

If you do not specify your own set_new_handler() function, new throws an
exception of type std::bad_alloc.

The following program fragment shows how you could use set_new_handler() to
return a message if the new operator cannot allocate storage:
#include <iostream>
#include <new>
#include <cstdlib>
using namespace std;

void no_storage()
{

std::cerr << "Operator new failed: no storage is
available.\n";

std::exit(1);
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}
int main(void)
{

std::set_new_handler(&no_storage);
// Rest of program ...

}

If the program fails because new cannot allocate storage, the program exits with
the message:
Operator new failed:
no storage is available.

v “C++ new Operator” on page 119
v “Free Store” on page 353

C++ delete Operator

The delete operator destroys the object created with new by deallocating
the memory associated with the object.

The delete operator has a void return type. It has the syntax:

��
::

delete object_pointer ��

The operand of delete must be a pointer returned by new, and cannot be a pointer
to constant. Deleting a null pointer has no effect.

The delete[] operator frees storage allocated for array objects created with new[].
The delete operator frees storage allocated for individual objects created with new.

It has the syntax:

��
::

delete [ ] array ��

The result of deleting an array object with delete is undefined, as is deleting an
individual object with delete[]. The array dimensions do not need to be specified
with delete[].

The result of any attempt to access a deleted object or array is undefined.

If a destructor has been defined for a class, delete invokes that destructor. Whether
a destructor exists or not, delete frees the storage pointed to by calling the function
operator delete() of the class if one exists.

The global ::operator delete() is used if:
v The class has no operator delete().
v The object is of a nonclass type.
v The object is deleted with the ::delete expression.

The global ::operator delete[]() is used if:
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v The class has no operator delete[]()
v The object is of a nonclass type
v The object is deleted with the ::delete[] expression.

The default global operator delete() only frees storage allocated by the default
global operator new(). The default global operator delete[]() only frees storage
allocated for arrays by the default global operator new[]().

v “Free Store” on page 353
v “Constructors and Destructors Overview” on page 341
v “void Type” on page 50

Allocation and Deallocation Functions
You may define your own new operator or allocation function as a class member
function or a global namespace function with the following restrictions:
v The first parameter must be of type std::size_t. It cannot have a default

parameter.
v The return type must be of type void*.
v Your allocation function may be a template function. Neither the first parameter

nor the return type may depend on a template parameter.
v If you declare your allocation function with the empty exception specification

throw(), your allocation function must return a null pointer your function fails.
Otherwise, your function must throw an exception of type std::bad_alloc or a
class derived from std::bad_alloc if your function fails.

You may define your own delete operator or deallocation function as a class
member function or a global namespace function with the following restrictions:
v The first parameter must be of type void*.
v The return type must be of type void.
v Your dellocation function may be a template function. Neither the first parameter

nor the return type may depend on a template parameter.

The following example defines replacement functions for global namespace new
and delete:
#include <cstdio>
#include <cstdlib>

using namespace std;

void* operator new(size_t sz) {
printf("operator new with %d bytes\n", sz);
void* p = malloc(sz);
if (p == 0) printf("Memory error\n");
return p;

}

void operator delete(void* p) {
if (p == 0) printf ("Deleting a null pointer\n");
else {

printf("delete object\n");
free(p);

}
}

struct A {
const char* data;
A() : data("Text String") { printf("Constructor of S\n"); }
xA() { printf("Destructor of S\n"); }

};
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int main() {
A* ap1 = new A;
delete ap1;

printf("Array of size 2:\n");
A* ap2 = new A[2];
delete[] ap2;

}

The following is the output of the above example:
operator
new with 40 bytes
operator new with 33 bytes
operator new with 4 bytes
Constructor of S
Destructor of S
delete object
Array of size 2:
operator new with 16 bytes
Constructor of S
Constructor of S
Destructor of S
Destructor of S
delete object

v “Free Store” on page 353

Binary Expressions
A binary expression contains two operands separated by one operator.

Not all binary operators have the same precedence.

All binary operators have left-to-right associativity.

The order in which the operands of most binary operators are evaluated is not
specified. To ensure correct results, avoid creating binary expressions that depend
on the order in which the compiler evaluates the operands.

As indicated in the following descriptions, the usual arithmetic conversions are
performed on the operands of most binary expressions.

The following table summarizes the operators for binary expressions:

Table 6. Precedence and associativity of binary operators

Rank Right Associative? Operator Function Usage

5 multiplication expr * expr

5 division expr / expr

5 modulo (remainder) expr % expr

6 binary addition expr + expr

6 binary subtraction expr - expr

7 bitwise shift left expr << expr

7 bitwise shift right expr >> expr

8 less than expr < expr
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Table 6. Precedence and associativity of binary operators (continued)

Rank Right Associative? Operator Function Usage

8 less than or equal to expr <= expr

8 greater than expr > expr

8 greater than or equal to expr >= expr

9 equal expr == expr

9 not equal expr != expr

10 bitwise AND expr & expr

11 bitwise exclusive OR expr | expr

12 bitwise inclusive OR expr | expr

13 logical AND expr && expr

14 logical inclusive OR expr || expr

16 yes simple assignment lvalue = expr

16 yes multiply and assign lvalue *= expr

16 yes divide and assign lvalue /= expr

16 yes modulo and assign lvalue %= expr

16 yes add and assign lvalue += expr

16 yes subtract and assign lvalue -= expr

16 yes shift left and assign lvalue <<= expr

16 yes shift right and assign lvalue >>= expr

16 yes bitwise AND and assign lvalue &= expr

16 yes bitwise exclusive OR and assign lvalue |= expr

16 yes bitwise inclusive OR and assign lvalue |= expr

18 comma (sequencing) expr , expr

v “Operator Precedence and Associativity” on page 95
v “Arithmetic Conversions” on page 149

Multiplication *
The * (multiplication) operator yields the product of its operands. The operands
must have an arithmetic or enumeration type. The result is not an lvalue. The usual
arithmetic conversions on the operands are performed.

Because the multiplication operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one multiplication operator. For example, the expression:
sites * number * cost

can be interpreted in any of the following ways:
(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

v “Lvalues and Rvalues” on page 99

Binary Expressions

Chapter 5. Expressions and Operators 125



v “Arithmetic Conversions” on page 149

Division /
The / (division) operator yields the quotient of its operands. The operands must
have an arithmetic or enumeration type. The result is not an lvalue.

If both operands are positive integers and the operation produces a remainder, the
remainder is ignored. For example, expression 7 / 4 yields the value 1 (rather than
1.75 or 2).

On all IBM C and C++ compilers, if either operand is negative, the
result is rounded towards zero.

The result is undefined if the second operand evaluates to 0.

The usual arithmetic conversions on the operands are performed.

v “Lvalues and Rvalues” on page 99
v “Arithmetic Conversions” on page 149

Remainder %
The % (remainder) operator yields the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 yields 2. The
result is not an lvalue.

Both operands must have an integral or enumeration type. If the right operand
evaluates to 0, the result is undefined. If either operand has a negative value, the
result is such that the following expression always yields the value of a if b is not 0
and a/b is representable:

( a / b ) * b + a %b;

The sign of the remainder is the same as the sign of the quotient.

The usual arithmetic conversions on the operands are performed.

v “Arithmetic Conversions” on page 149

Addition +
The + (addition) operator yields the sum of its operands. Both operands must have
an arithmetic type, or one operand must be a pointer to an object type and the
other operand must have an integral or enumeration type.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

A pointer to an object in an array can be added to a value having integral type. The
result is a pointer of the same type as the pointer operand. The result refers to
another element in the array, offset from the original element by the amount of the
integral value treated as a subscript. If the resulting pointer points to storage
outside the array, other than the first location outside the array, the result is
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undefined. The compiler does not provide boundary checking on the pointers. For
example, after the addition, ptr points to the third element of the array:

int array[5];
int *ptr;
ptr = array + 2;

v “Pointer Arithmetic” on page 84
v “Pointer Conversions” on page 146

Subtraction −
The - (subtraction) operator yields the difference of its operands. Both operands
must have an arithmetic or enumeration type, or the left operand must have a
pointer type and the right operand must have the same pointer type or an integral
or enumeration type. You cannot subtract a pointer from an integral value.

When both operands have an arithmetic type, the usual arithmetic conversions on
the operands are performed. The result has the type produced by the conversions
on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. The result is a pointer
of the same type as the pointer operand.

If both operands are pointers to the same type, the compiler converts the result to
an integral type that represents the number of objects separating the two
addresses. Behavior is undefined if the pointers do not refer to objects in the same
array.

v “Pointer Arithmetic” on page 84
v “Pointer Conversions” on page 146

Bitwise Left and Right Shift << >>
The bitwise shift operators move the bit values of a binary object. The left operand
specifies the value to be shifted. The right operand specifies the number of
positions that the bits in the value are to be shifted. The result is not an lvalue. Both
operands have the same precedence and are left-to-right associative.

Operator Usage

<< Indicates the bits are to be shifted to the left.
>> Indicates the bits are to be shifted to the right.

Each operand must have an integral or enumeration type. The compiler performs
integral promotions on the operands, and then the right operand is converted to
type int. The result has the same type as the left operand (after the arithmetic
conversions).

The right operand should not have a negative value or a value that is greater than
or equal to the width in bits of the expression being shifted. The result of bitwise
shifts on such values is unpredictable.
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If the right operand has the value 0, the result is the value of the left operand (after
the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if left_op has the value
4019, the bit pattern (in 16-bit format) of left_op is:
0000111110110011

The expression left_op << 3 yields:
0111110110011000

Relational < > <= >=
The relational operators compare two operands and determine the validity of a
relationship.

The type of the result is int and has the values 1 if the specified relationship
is true, and 0 if false.

The type of the result is bool and has the values true or false.

The result is not an lvalue.

The following table describes the four relational operators:

Operator Usage

< Indicates whether the value of the left operand is less than the value
of the right operand.

> Indicates whether the value of the left operand is greater than the
value of the right operand.

<= Indicates whether the value of the left operand is less than or equal
to the value of the right operand.

>= Indicates whether the value of the left operand is greater than or
equal to the value of the right operand.

Both operands must have arithmetic or enumeration types or be pointers to the
same type.

The result has type int.

The result has type bool.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

When the operands are pointers, the result is determined by the locations of the
objects to which the pointers refer. If the pointers do not refer to objects in the same
array, the result is not defined.

A pointer can be compared to a constant expression that evaluates to 0. You can
also compare a pointer to a pointer of type void*. The pointer is converted to a
pointer of type void*.
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If two pointers refer to the same object, they are considered equal. If two pointers
refer to nonstatic members of the same object, the pointer to the object declared
later is greater, provided that they are not separated by an access specifier;
otherwise the comparison is undefined. If two pointers refer to data members of the
same union, they have the same address value.

If two pointers refer to elements of the same array, or to the first element beyond
the last element of an array, the pointer to the element with the higher subscript
value is greater.

You can only compare members of the same object with relational operators.

Relational operators have left-to-right associativity. For example, the expression:
a < b <= c

is interpreted as:
(a < b) <= c

If the value of a is less than the value of b, the first relationship yields 1 in C, or
true in C++. The compiler then compares the value true (or 1) with the value of c
(integral promotions are carried out if needed).

Equality == !=
The equality operators, like the relational operators, compare two operands for the
validity of a relationship. The equality operators, however, have a lower precedence
than the relational operators.

The type of the result is int and has the values 1 if the specified relationship
is true, and 0 if false.

The type of the result is bool and has the values true or false.

The following table describes the two equality operators:

Operator Usage

== Indicates whether the value of the left operand is equal to the value
of the right operand.

!= Indicates whether the value of the left operand is not equal to the
value of the right operand.

Both operands must have arithmetic or enumeration types or be pointers to the
same type, or one operand must have a pointer type and the other operand must
be a pointer to void or a null pointer. The result is type int in C or bool in C++.

If the operands have arithmetic types, the usual arithmetic conversions on the
operands are performed.

If the operands are pointers, the result is determined by the locations of the objects
to which the pointers refer.

If one operand is a pointer and the other operand is an integer having the value 0,
the == expression is true only if the pointer operand evaluates to NULL. The !=
operator evaluates to true if the pointer operand does not evaluate to NULL.
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You can also use the equality operators to compare pointers to members that are of
the same type but do not belong to the same object. The following expressions
contain examples of equality and relational operators:
time < max_time == status < complete
letter != EOF

Note: The equality operator (==) should not be confused with the assignment (=)
operator.

For example,
if (x == 3) evaluates to true (or 1) if x is equal to three. Equality tests like this

should be coded with spaces between the operator and the
operands to prevent unintentional assignments.

while
if (x = 3) is taken to be true because (x = 3) evaluates to a nonzero value

(3). The expression also assigns the value 3 to x.

v “Simple Assignment =” on page 134

Bitwise AND &
The & (bitwise AND) operator compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s, the corresponding bit
of the result is set to 1. Otherwise, it sets the corresponding result bit to 0.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands.

Because the bitwise AND operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise AND operator.

The following example shows the values of a, b, and the result of a & b represented
as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a & b 0000000000001100

Note: The bitwise AND (&) should not be confused with the logical AND. (&&)
operator. For example,

1 & 4 evaluates to 0
while

1 && 4 evaluates to true

v “Logical AND &&” on page 132

Bitwise Exclusive OR |
The bitwise exclusive OR operator (in EBCDIC, the | symbol is represented by the
¬ symbol) compares each bit of its first operand to the corresponding bit of the
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second operand. If both bits are 1’s or both bits are 0’s, the corresponding bit of the
result is set to 0. Otherwise, it sets the corresponding result bit to 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise exclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise exclusive OR operator. Note that the | character can be
represented by the trigraph ??'.

The following example shows the values of a, b, and the result of a | b represented
as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a | b 0000000001110010

v “Trigraph Sequences” on page 15

Bitwise Inclusive OR |
The | (bitwise inclusive OR) operator compares the values (in binary format) of
each operand and yields a value whose bit pattern shows which bits in either of the
operands has the value 1. If both of the bits are 0, the result of that bit is 0;
otherwise, the result is 1.

Both operands must have an integral or enumeration type. The usual arithmetic
conversions on each operand are performed. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise inclusive OR operator. Note that the | character can be
represented by the trigraph ??!.

The following example shows the values of a, b, and the result of a | b represented
as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a | b 0000000001111110

Note: The bitwise OR (|) should not be confused with the logical OR (||) operator.
For example,

1 | 4 evaluates to 5
while

1 || 4 evaluates to true

v “Trigraph Sequences” on page 15
v “Logical OR ||” on page 132
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Logical AND &&
The && (logical AND) operator indicates whether both operands are true.

If both operands have nonzero values, the result has the value 1. Otherwise,
the result has the value 0. The type of the result is int. Both operands must have a
arithmetic or pointer type. The usual arithmetic conversions on each operand are
performed.

If both operands have values of true, the result has the value true.
Otherwise, the result has the value false. Both operands are implicitly converted to
bool and the result type is bool.

Unlike the & (bitwise AND) operator, the && operator guarantees left-to-right
evaluation of the operands. If the left operand evaluates to 0 (or false), the right
operand is not evaluated.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

Expression Result

1 && 0 false or 0
1 && 4 true or 1
0 && 0 false or 0

The following example uses the logical AND operator to avoid division by zero:
(y != 0) && (x / y)

The expression x / y is not evaluated when y != 0 evaluates to 0 (or false).

Note: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example:

1 && 4 evaluates to 1 (or true)
while

1 & 4 evaluates to 0

v “Bitwise AND &” on page 130

Logical OR ||
The || (logical OR) operator indicates whether either operand is true.

If either of the operands has a nonzero value, the result has the value 1.
Otherwise, the result has the value 0. The type of the result is int. Both operands
must have a arithmetic or pointer type. The usual arithmetic conversions on each
operand are performed.

If either operand has a value of true, the result has the value true.
Otherwise, the result has the value false. Both operands are implicitly converted to
bool and the result type is bool.
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Unlike the | (bitwise inclusive OR) operator, the || operator guarantees left-to-right
evaluation of the operands. If the left operand has a nonzero (or true) value, the
right operand is not evaluated.

The following examples show how expressions that contain the logical OR operator
are evaluated:

Expression Result

1 || 0 true or 1
1 || 4 true or 1
0 || 0 false or 0

The following example uses the logical OR operator to conditionally increment y:
++x || ++y;

The expression ++y is not evaluated when the expression ++x evaluates to a
nonzero (or true) quantity.

Note: The logical OR (||) should not be confused with the bitwise OR (|) operator.
For example:

1 || 4 evaluates to 1 (or true)
while

1 | 4 evaluates to 5

v “Bitwise Inclusive OR |” on page 131

C++ Pointer to Member Operators .* −>*

There are two pointer to member operators: .* and −>*.

The .* operator is used to dereference pointers to class members. The first
operand must be of class type. If the type of the first operand is class type T, or is a
class that has been derived from class type T, the second operand must be a
pointer to a member of a class type T.

The ->* operator is also used to dereference pointers to class members. The first
operand must be a pointer to a class type. If the type of the first operand is a
pointer to class type T, or is a pointer to a class derived from class type T, the
second operand must be a pointer to a member of class type T.

The .* and ->* operators bind the second operand to the first, resulting in an object
or function of the type specified by the second operand.

If the result of.* or ->* is a function, you can only use the result as the operand for
the ( ) (function call) operator. If the second operand is an lvalue, the result of .*
or ->* is an lvalue.

v “Class Member Lists” on page 293
v “Lvalues and Rvalues” on page 99
v “Pointers to Members” on page 298

Binary Expressions

Chapter 5. Expressions and Operators 133



Assignment Expressions
An assignment expression stores a value in the object designated by the left
operand. There are two types of assignment operators: simple assignment and
compound assignment.

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression is
the value of the left operand after the assignment has completed.

The result of an assignment expression is not an lvalue.

All assignment operators have the same precedence and have right- to-left
associativity.

Simple Assignment =
The simple assignment operator has the following form:

lvalue = expr

The operator stores the value of the right operand expr in the object designated by
the left operand lvalue.

The left operand must be a modifiable lvalue. The type of an assignment operation
is the type of the left operand.

If the left operand is not a class type, the right operand is implicitly converted to the
type of the left operand. This converted type will not be qualified by const or
volatile.

If the left operand is a class type, that type must be complete. The copy assignment
operator of the left operand will be called.

If the left operand is an object of reference type, the compiler will assign the value
of the right operand to the object denoted by the reference.

A packed structure or union can be assigned to a nonpacked structure or
union of the same type. A nonpacked structure or union can be assigned to a
packed structure or union of the same type.

If one operand is packed and the other is not, z/OS C/C++ remaps the layout of the
right operand to match the layout of the left. This remapping of structures might
degrade performance. For efficiency, when you perform assignment operations with
structures or unions, you should ensure that both operands are either packed or
nonpacked.

Note: If you assign pointers to structures or unions, the objects they point to must
both be either packed or nonpacked. See “Initializing Pointers” on page 82
for more information on assignments with pointers.

v “Pointers” on page 81
v “volatile and const Qualifiers” on page 69
v “Pointers to Members” on page 298
v “References” on page 92
v “Structures” on page 51
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v “Unions” on page 59
v “Equality == !=” on page 129
v “Initializing Pointers” on page 82

Compound Assignment
The compound assignment operators consist of a binary operator and the simple
assignment operator. They perform the operation of the binary operator on both
operands and give the result of that operation to the left operand.

The following table shows the operand types of compound assignment expressions:

Operator Left Operand Right Operand

+= or -= Arithmetic Arithmetic

+= or -= Pointer Integral type

*=, /=, and %= Arithmetic Arithmetic

<<=, >>=, &=, |=, and |= Integral type Integral type

Note that the expression
a *= b + c

is equivalent to
a = a * (b + c)

and not
a = a * b + c

The following table lists the compound assignment operators and shows an
expression using each operator:

Operator Example Equivalent Expression

+= index += 2 index = index + 2
-= *(pointer++) -= 1 *pointer = *(pointer++) - 1
*= bonus *= increase bonus = bonus * increase
/= time /= hours time = time / hours
%= allowance %= 1000 allowance = allowance % 1000
<<= result <<= num result = result << num
>>= form >>= 1 form = form >> 1
&= mask &= 2 mask = mask & 2
|= test |= pre_test test = test | pre_test
|= flag |= ON flag = flag | ON

Although the equivalent expression column shows the left operands (from the
example column) twice, it is in effect evaluated only once.

Cast Expressions
The cast operator is used for explicit type conversions. This operator has the
following form, where T is a type, and expr is an expression:

( T ) expr
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It converts the value of expr to the type T. The result of this operation is an lvalue if
T is a reference. In all other cases, the result is an rvalue.

You can also use the following function-style notation:

expr( T )

This form also converts the value of expr to the type T. A function-style cast with no
arguments, such as X() is equivalent to the declaration X t(), where t is a
temporary object. Similarly, a function-style cast with more than one argument, such
as X(a, b), is equivalent to the declaration X t(a, b).

For C++, the operand can have class type. If the operand has class type, it
can be cast to any type for which the class has a user- defined conversion function.
Casts can invoke a constructor, if the target type is a class, or they can invoke a
conversion function, if the source type is a class. They can be ambiguous if both
conditions hold.

An explicit type conversion can also be expressed by using the C++ type
conversion operator static_cast.

The following demonstrates the use of the cast operator. The example dynamically
creates an integer array of size 10:
#include <stdlib.h>

int main(void) {
int* myArray = (int*) malloc(10 * sizeof(int));
free(myArray);
return 0;

}

The malloc() library function returns a void pointer that points to memory that will
hold an object of the size of its argument. The statement int* myArray = (int*)
malloc(10 * sizeof(int)) does the following
v Creates a void pointer that points to memory that can hold ten integers.
v Converts that void pointer into an integer pointer with the use of the cast

operator.
v Assigns that integer pointer to myArray. Because a name of an array is the same

as a pointer to the initial element of the array, myArray is an array of ten integers
stored in the memory created by the call to malloc().

v “Conversion Functions” on page 361
v “Conversion by Constructor” on page 360
v “Standard Type Conversions” on page 144
v “Lvalues and Rvalues” on page 99
v “References” on page 92
v “Temporary Objects” on page 357
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C++ throw Expressions

A throw expression is used to throw exceptions to C++ exception handlers.
A throw expression is of type void.

v “Chapter 17. Exception Handling” on page 401
v “void Type” on page 50

Conditional Expressions
A conditional expression is a compound expression that contains a condition
implicitly converted to bool (operand1), an expression to be evaluated if the
condition evaluates to true (operand2), and an expression to be evaluated if the
condition has the value false (operand3).

Conditional expressions have right-to-left associativity. The left most operand is
evaluated first, and then only one of the remaining two operands is evaluated.

The conditional expression contains one two-part operator. The ? symbol follows the
condition, and the : symbol appears between the two action expressions. All
expressions that occur between the ? and : are treated as one expression.

The first operand must have a scalar type. The type of the second and third
operands must be one of the following:
v An arithmetic type
v A compatible pointer, structure, or union type
v void

The second and third operands can also be a pointer or a null pointer constant.

Two objects are compatible when they have the same type but not necessarily the
same type qualifiers (volatile orconst). Pointer objects are compatible if they have
the same type or are pointers to void.

The first operand is evaluated, and its value determines whether the second or third
operand is evaluated:
v If the value is true, the second operand is evaluated.
v If the value is false, the third operand is evaluated.

The result is the value of the second or third operand.

If the second and third expressions evaluate to arithmetic types, the usual
arithmetic conversions are performed on the values. The types of the second and
third operands determine the type of the result as shown in the following tables.

Type of Conditional C Expressions

Type of One Operand Type of Other Operand Type of Result

Arithmetic Arithmetic Arithmetic type after usual
arithmetic conversions
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Type of One Operand Type of Other Operand Type of Result

Structure or union type Compatible structure or union
type

Structure or union type with
all the qualifiers on both
operands

void void void

Pointer to compatible type Pointer to compatible type Pointer to type with all the
qualifiers specified for the
type

Pointer to type NULL pointer (the constant 0) Pointer to type

Pointer to object or
incomplete type

Pointer to void Pointer to void with all the
qualifiers specified for the
type

Type of Conditional C++ Expressions

Type of One Operand Type of Other Operand Type of Result

Reference to type Reference to type Reference after usual
reference conversions

Class T Class T Class T

Class T Class X Class type for which a
conversion exists. If more
than one possible conversion
exists, the result is
ambiguous.

throw expression Other (type, pointer,
reference)

Type of the expression that is
not a throw expression

Examples of Conditional Expressions
The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:
x = (y > z) ? y : z;

The following is an equivalent statement:
if (y > z)

x = y;
else

x = z;

The following expression calls the function printf, which receives the value of the
variable c, if c evaluates to a digit. Otherwise, printf receives the character
constant 'x'.
printf(" c = %c\n", isdigit(c) ? c : 'x');

If the last operand of a conditional expression contains an assignment operator, use
parentheses to ensure the expression evaluates properly. For example, the =
operator has higher precedence than the ?: operator in the following expression:
int i,j,k;
(i == 7) ? j ++ : k = j;

The compiler will interpret this expression as if it were parenthesized this way:
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int i,j,k;
((i == 7) ? j ++ : k) = j;

That is, k is treated as the third operand, not the entire assignment expression k =
j.

To assign the value of j to k i == 7 is false, enclose the last operand in
parentheses:
int i,j,k;
(i == 7) ? j ++ : (k = j);

The typeid Operator
The typeid operator provides program variable and expression type information. The
operator has the following form:

typeid ( expr )

The typeid operator returns an lvalue of type const std::type_info that represents
the type of expression expr.

You must include the standard template library header <typeinfo> to use the typeid
operator.

If expr is a reference or a dereferenced pointer to a polymorphic class, typeid will
return a type_info object that represents the object that the reference or pointer
denotes at run time. If it is not a polymorphic class, typeid will return a type_info
object that represents the type of the reference or dereferenced pointer. The
following example demonstrates this:
#include <iostream>
#include <typeinfo>
using namespace std;

struct A { virtual xA() { } };
struct B : A { };

struct C { };
struct D : C { };

int main() {
B bobj;
A* ap = &bobj;
A& ar = bobj;
cout << "ap: " << typeid(*ap).name() << endl;
cout << "ar: " << typeid(ar).name() << endl;

D dobj;
C* cp = &dobj;
C& cr = dobj;
cout << "cp: " << typeid(*cp).name() << endl;
cout << "cr: " << typeid(cr).name() << endl;

}

The following is the output of the above example:
ap: B
ar: B
cp: C
cr: C
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Classes A and B are polymorphic; classes C and D are not. Although cp and cr refer
to an object of type D, typeid(*cp) and typeid(cr) return objects that represent
class C.

Lvalue-to-rvalue, array-to-pointer, and function-to-pointer conversions will not be
applied to expr. For example, the output of the following example will be int [10],
not int *:
#include <iostream>
#include <typeinfo>
using namespace std;

int main() {
int myArray[10];
cout << typeid(myArray).name() << endl;

}

If expr is a class type, that class must be completely defined.

The typeid operator ignores top-level const or volatile qualifiers.

Comma Expression ,
A comma expression contains two operands separated by a comma. Although the
compiler evaluates both operands, the value of the right operand is the value of the
expression. The left operand is evaluated, possibly producing side effects, and the
value is discarded. The result of a comma expression is not an lvalue.

Both operands of a comma expression can have any type. All comma expressions
have left-to-right associativity. The left operand is fully evaluated before the right
operand.

In the following example, if omega has the value 11, the expression increments delta
and assigns the value 3 to alpha:
alpha = (delta++, omega % 4);

Any number of expressions separated by commas can form a single expression.
The compiler evaluates the left-most expression first. The value of the right-most
expression becomes the value of the entire expression.

For example, the value of the expression:
intensity++, shade * increment, rotate(direction);

is the value of the expression:
rotate(direction)

The primary use of the comma operator is to produce side effects in the following
situations:
v Calling a function
v Entering or repeating an iteration loop
v Testing a condition
v Other situations where a side effect is required but the result of the expression is

not immediately needed

To use the comma operator in a context where the comma has other meanings,
such as in a list of function arguments or a list of initializers, you must enclose the
comma operator in parentheses. For example, the function

Conditional Expressions
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f(a, (t = 3, t + 2), c);

has only three arguments: the value of a, the value 5, and the value of c. The value
of the second argument is the result of the comma expression in parentheses:
t = 3, t + 2

which has the value 5.

The following table gives some examples of the uses of the comma operator:

Statement Effects

for (i=0; i<2; ++i, f() ); A for statement in which i is incremented and
f() is called at each iteration.

if ( f(), ++i, i>1 )
{ /* ... */ }

An if statement in which function f() is called,
variable i is incremented, and variable i is tested
against a value. The first two expressions within
this comma expression are evaluated before the
expression i>1. Regardless of the results of the
first two expressions, the third is evaluated and its
result determines whether the if statement is
processed.

func( ( ++a, f(a) ) ); A function call to func() in which a is
incremented, the resulting value is passed to a
function f(), and the return value of f() is
passed to func(). The function func() is passed
only a single argument, because the comma
expression is enclosed in parentheses within the
function argument list.

Comma Expression
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Chapter 6. Implicit Type Conversions

An expression e of a given type is implicitly converted if used in one of the following
situations:
v Expression e is used as an operand of an arithmetic or logical operation.
v Expression e is used as a condition in an if statement or an iteration statement

(such as a for loop). Expression e will be converted to bool (or int in C).
v Expression e is used in a switch statement. Expression e will be converted to an

integral type.
v Expression e is used in an initialization. This includes the following:

– An assignment is made to an lvalue that has a different type than e.
– A function is provided an argument value of e that has a different type than

the parameter.
– Expression e is specified in the return statement of a function, and e has a

different type from the defined return type for the function.

The compiler will allow an implicit conversion of an expression e to a type T if and
only if the compiler would allow the following statement:
T var = e;

For example when you add values having different data types, both values are first
converted to the same type: when a short int value and an int value are added
together, the short int value is converted to the int type.

You can perform explicit type conversions using one of the cast operators, the
function style cast, or the C style cast.

v “Chapter 5. Expressions and Operators” on page 95
v “static_cast Operator” on page 108
v “reinterpret_cast Operator” on page 109
v “const_cast Operator” on page 110
v “dynamic_cast Operator” on page 111
v “Cast Expressions” on page 135

Integral and Floating-Point Promotions
An integral promotion is the conversion of one integral type to another where the
second type can hold all possible values of the first type. Certain fundamental types
can be used wherever an integer can be used. The following fundamental types can
be converted through integral promotion are:
v char

v bool
v wchar_t
v short int
v enumerators
v objects of enumeration type
v integer bit fields (both signed and unsigned)

Except for wchar_t, if the value cannot be represented by an int, the value is
converted to an unsigned int. For wchar_t, if an int can represent all the values of
the original type, the value is converted to the type that can best represent all the
values of the original type. For example, if a long can represent all the values, the
value is converted to a long.
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Floating-Point PromotionsYou can convert an rvalue of type float to an rvalue of
type double. The value of the expression is unchanged. This conversion is a
floating-point promotion.

v “char and wchar_t Type Specifiers” on page 45
v “Boolean Variables” on page 46
v “Integer Variables” on page 49
v “Enumerations” on page 65
v “Declaring and Using Bit Fields in Structures” on page 55

Standard Type Conversions
Many C and C++ operators cause implicit type conversions, which change the type
of an expression. When you add values having different data types, both values are
first converted to the same type. For example, when a short int value and an int
value are added together, the short int value is converted to the int type. It can
result in loss of data if the value of the original object is outside the range
representable by the shorter type.

Implicit type conversions can occur when:
v An operand is prepared for an arithmetic or logical operation.
v An assignment is made to an lvalue that has a different type than the assigned

value.
v A function is provided an argument value that has a different type than the

parameter.
v The value specified in the return statement of a function has a different type

from the defined return type for the function.

You can perform explicit type conversions using the C-style cast, the C++
function-style cast, or one of the C++ cast operators.
#include <iostream>
using namespace std;

int main() {
float num = 98.76;
int x1 = (int) num;
int x2 = int(num);
int x3 = static_cast<int>(num);

cout << "x1 = " << x1 << endl;
cout << "x2 = " << x2 << endl;
cout << "x3 = " << x3 << endl;

}

The following is the output of the above example:
x1 = 98
x2 = 98
x3 = 98

The integer x1 is assigned a value in which num has been explicitly converted to an
int with the C- style cast. The integer x2 is assigned a value that has been
converted with the function-style cast. The integer x3 is assigned a value that has
been converted with the static_cast operator.

v “return Statement” on page 192

Integral Promotions
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v “Cast Expressions” on page 135

Lvalue-to-Rvalue Conversions
If an lvalue appears in a situation in which the compiler expects an rvalue, the
compiler converts the lvalue to an rvalue.

An lvalue e of a type T can be converted to an rvalue if T is not a function or array
type. The type of e after conversion will be T. The following table lists exceptions to
this:

Situation before conversion Resulting behavior

T is an incomplete type compile-time error

e refers to an uninitialized object undefined behavior

e refers to an object not of type T, nor a type
derived from T

undefined behavior

T is a non-class type the type of e after conversion is T, not
qualified by either const or volatile

v “volatile and const Qualifiers” on page 69

Boolean Conversions

You can convert integral, floating-point, arithmetic, enumeration, pointer, and
pointer to member rvalue types to an rvalue of type bool. Any value other than a
zero, null pointer, or null member pointer value is converted to true; A zero, null
pointer, or null member pointer value is converted to false.

The following is an example of boolean conversions:
void f(int* a, int b)
{

bool d = a; // false if a == NULL
bool e = b; // false if b == 0

}

The variable d will be false if a is equal to a null pointer. Otherwise, d will be true.
The variable e will be false if b is equal to zero. Otherwise,e will be true.

v “Boolean Variables” on page 46

Integral Conversions
You can convert the following:
v An rvalue of integer type (including signed and unsigned integer types) to

another rvalue of integer type
v An rvalue of enumeration type to an rvalue of integer type

If you are converting an integer a to an unsigned type, the resulting value x is the
least unsigned integer such that a and x are congruent modulo 2|n, where n is the
number of bits used to represent an unsigned type. If two numbers a and x are
congruent modulo 2|n, the following expression is true, where the function pow(m,
n) returns the value of m to the power of n:
a % pow(2, n) == x % pow(2, n)

Standard Type Conversions

Chapter 6. Implicit Type Conversions 145



If you are converting an integer a to a signed type, the compiler does not change
the resulting value if the new type is large enough to hold the a. If the new type is
not large enough, the behavior is defined by the compiler.

If you are converting a bool to an integer, values of false are converted to 0; values
of true are converted to 1.

Integer promotions belong to a different category of conversions; they are not
integral conversions.

v “Integer Variables” on page 49

Signed-Integer Conversions (z/OS)

The z/OS C/C++ compiler converts a signed integer to a shorter integer by
truncating the high-order bits. It converts an integer to a longer signed integer by
sign-extension.

When converting an integral type to a floating-point type, if the value cannot be
represented precisely, HEX floating-point mode will round the value to the nearest
representable number, whereas IEEE mode will round according to the specified
rounding mode.

For IEEE floating-point types, the rounding mode for static initializers (compile-time
rounding) is controlled by the ROUND compiler option. The rounding mode during
execution time is controlled by the fp_swap_rnd run-time function.

When converting a signed integer to an unsigned integer, z/OS C/C++ converts the
signed integer to the size of the unsigned integer. It interprets the result as an
unsigned value.

When converting a long long int type to packed decimal, the resulting size is
decimal(20,0).

Floating-Point Conversions
You can convert an rvalue of floating-point type to another rvalue of floating-point
type.

Floating-point promotions (converting from float to double) belong to a different
category of conversions; they are not floating-point conversions.

v “Floating-Point Variables” on page 47
v “Integral and Floating-Point Promotions” on page 143

Pointer Conversions
Pointer conversions are performed when pointers are used, including pointer
assignment, initialization, and comparison.

Conversion to void*

Standard Type Conversions
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Any pointer to an object of a type T, optionally qualified with const, volatile, or
const volatile, can be converted to void*, keeping the same const or volatile
qualifications. You can also convert any pointer to a function to a void*, provided
that a void* has sufficient bits to hold it.

Derived-to-Base Conversions

You can convert an rvalue pointer of type B* to an rvalue pointer of class A* where
A is an accessible base class of B as long as the conversion is not ambiguous. The
conversion is ambiguous if the expression for the accessible base class can refer to
more than one distinct class. The resulting value points to the base class subobject
of the derived class object. If the pointer of type B* is null, it will be converted to a
null pointer of type A*. Note that you cannot convert a pointer to a class into a
pointer to its base class if the base class is a virtual base class of the derived class.

Null Pointer Constants

A constant expression that evaluates to zero is a null pointer constant. This
expression can be converted to a pointer. This pointer will be a null pointer (pointer
with a zero value), and is guaranteed not to point to any object.

Array-to-Pointer Conversions

You can convert an lvalue or rvalue with type ″array of N,″ where N is the type of a
single element of the array, to N*. The result is a pointer to the initial element of the
array. You cannot perform the conversion if the expression is used as the operand
of the & (address) operator or the sizeof operator.

Function-to-Pointer Conversions

You can convert an lvalue that is a function of type T to an rvalue that is a pointer to
a function of type T, except when the expression is used as the operand of the &
(address) operator, the () (function call) operator, or the sizeof operator.

v “void Type” on page 50
v “Pointers” on page 81
v “Integer Constant Expressions” on page 101
v “Arrays” on page 86
v “Pointers to Functions” on page 173

Reference Conversions
A reference conversion can be performed wherever a reference initialization occurs,
including reference initialization done in argument passing and function return
values. A reference to a class can be converted to a reference to an accessible
base class of that class as long as the conversion is not ambiguous. The result of
the conversion is a reference to the base class subobject of the derived class
object.

Reference conversion is allowed if the corresponding pointer conversion is allowed.

v “References” on page 92
v “Initializing References” on page 93
v “Calling Functions and Passing Arguments” on page 164

Standard Type Conversions
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v “Function Return Values” on page 171

Pointer-to-Member Conversions
Pointer-to-member conversion can occur when pointers to members are initialized,
assigned, or compared.

A constant expression that evaluates to zero can be converted to the null pointer to
a member.

Note: A pointer to a member is not the same as a pointer to an object or a pointer
to a function.

A pointer to a member of a base class can be converted to a pointer to a member
of a derived class if the following conditions are true:
v The conversion is not ambiguous. The conversion is ambiguous if multiple

instances of the base class are in the derived class.
v A pointer to the derived class can be converted to a pointer to the base class. If

this is the case, the base class is said to be accessible.
v Member types must match. For example suppose class A is a base class of class

B. You cannot convert a pointer to member of A of type int to a pointer to
member of type B of type float.

v The base class cannot be virtual.

v “Integer Constant Expressions” on page 101
v “Access Control of Base Class Members” on page 321
v “Pointers to Members” on page 298
v “C++ Pointer to Member Operators .* −>*” on page 133

Qualification Conversions
You can convert an rvalue of type cv1 T* where cv1 is any combination of zero or
more const or volatile qualifications, to an rvalue of type cv2 T* if cv2 T* is more
const or volatile qualified than cv1 T*.

You can convert an rvalue of type pointer to member of a class X of cv1 T, to an
rvalue of type pointer to member of a class X of cv2 T if cv2 T is more const or
volatile qualified than cv1 T.

v “volatile and const Qualifiers” on page 69

Function Argument Conversions
If a function declaration is present and includes declared argument types,

the compiler performs type checking. If no function declaration is visible when a
function is called, the compiler can perform default argument promotions, which
consist of the following:
v Integral promotions
v Arguments with type float are converted to type double.

Function declarations in C++ must always specify their parameter types.
Also, functions may not be called if it has not already been declared.

Standard Type Conversions
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v “Integral and Floating-Point Promotions” on page 143
v “Function Declarations” on page 154

Other Conversions
By definition, the void type has no value. Therefore, it cannot be converted to any
other type, and no other value can be converted to void by assignment. However, a
value can be explicitly cast to void.

No conversions between structure or union types are allowed.

There are no standard conversions between class types.

You can write your own conversion operators for class types.

In C, when you define a value using the enum type specifier, the value is
treated as an int. Conversions to and from an enum value proceed as for the int
type.

You can convert from an enum to any integral type but not from an integral type to
an enum.

When a packed decimal type is converted to a long long int type, z/OS
C/C++ discards the fractional part.

v “void Type” on page 50
v “User-Defined Conversions” on page 358
v “Enumerations” on page 65

Arithmetic Conversions
The conversions depend on the specific operator and the type of the operand or
operands. However, many operators perform similar conversions on operands of
integer and floating-point types. These standard conversions are known as the
arithmetic conversions because they apply to the types of values ordinarily used in
arithmetic.

Arithmetic conversions are used for matching operands of arithmetic operators.

Arithmetic conversion proceeds in the following order:

Operand Type Conversion

One operand has long double type The other operand is converted to long
double.

One operand has double type The other operand is converted to double.

One operand has float type The other operand is converted to float.

One operand has unsigned long long int
type

The other operand is converted to unsigned
long long int

One operand has long long type. The other operand is converted to long long.

One operand has unsigned long int type The other operand is converted to unsigned
long int.

Standard Type Conversions
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Operand Type Conversion

One operand has unsigned int type and the
other operand has long int type and the
value of the unsigned int can be represented
in a long int

The operand with unsigned int type is
converted to long int.

One operand has unsigned int type and the
other operand has long int type and the
value of the unsigned int cannot be
represented in a long int

Both operands are converted to unsigned
long int.

One operand has long int type The other operand is converted to long int.

One operand has unsigned int type The other operand is converted to unsigned
int.

Both operands have int type The result is type int.

v “Chapter 5. Expressions and Operators” on page 95
v “Integer Variables” on page 49
v “Floating-Point Variables” on page 47

The explicit Keyword

The explicit keyword controls unwanted implicit type conversions. It can only
be used in declarations of constructors within a class declaration.

A constructor declared with only one argument and without the explicit keyword is
a converting constructor. You can construct objects with a converting constructor
using the assignment operator. Declaring a constructor of this type with the
explicit keyword prevents this behavior. For example, except for the default
constructor, the constructors in the following class are converting constructors.
class A
{ public:

A();
A(int);
A(const char*, int = 0);

};

The following declarations are legal.
A c = 1;
A d = "Venditti";

The first declaration is equivalent to A c = A(1).

If you declare the constructor of the class with the explicit keyword, the previous
declarations would be illegal.

For example, if you declare the class as:
class A
{ public:

explicit A();
explicit A(int);
explicit A(const char*, int = 0);

};

You can only assign values that match the values of the class type.

Arithmetic Conversions
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For example, the following statements will be legal:
A a1;
A a2 = A(1);
A a3(1);
A a4 = A("Venditti");
A* p = new A(1);
A a5 = (A)1;
A a6 = static_cast<A>(1);

Arithmetic Conversions
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Chapter 7. Functions

A function declaration consists of a return type, a name, and an argument list. It is
used to declare the format and existence of a function prior to its use.

A function definition contains a function declaration and the body of the function. A
function can only have one definition.

The declaration is used by the compiler for argument type checking and argument
conversions. Declarations can appear several times in a program, provided the
declarations are compatible. They allow the compiler to check for mismatches
between the parameters of a function call and those in the function declaration.

Declarations are typically placed in header files, while function definitions appear in
source files.

v “Function Declarations” on page 154
v “Function Definitions” on page 158

C++ Enhancements to C Functions

The C++ language provides many enhancements to C functions. These
are:
v Reference arguments
v Default arguments
v Reference return types
v Inline functions
v Member functions
v Overloaded functions
v Operator functions
v Constructor and destructor functions
v Conversion functions
v Virtual functions
v Function templates
v Exception specifications
v Constructor initializers

v “Passing Arguments by Reference” on page 167
v “Default Arguments in C++ Functions” on page 169
v “Using References as Return Types” on page 172
v “Inline Functions” on page 174
v “Member Functions” on page 295
v “Overloading Functions” on page 269
v “Overloading Operators” on page 271
v “Constructors and Destructors Overview” on page 341
v “Conversion Functions” on page 361
v “Virtual Functions” on page 333
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Function Declarations
A function declaration establishes the name and the number and types of the
parameters of the function.

��
extern
static

type_specifier
function_name �

� �

,

( )
parameter , ... const

volatile

�

�
exception_specification

; ��

A function argument is an expression that you use within the parenthesis of a
function call. A function parameter is an object or reference declared within the
parenthesis of a function declaration or definition. When you call a function, the
arguments are evaluated, and each parameter is initialized with the value of the
corresponding argument. The semantics of argument passing are identical to those
of assignment.

Implicit declaration of functions is not allowed.

The default return type of a function is int.

There is no default return type.

To indicate that the function does not return a value, declare it with a return type of
void.

Only member functions may have const or volatile specifiers after the
parenthesized parameter list.

A function cannot be declared as returning a data object having a volatile or const
type but it can return a pointer to a volatile or const object. A function may return a
pointer to function, or a pointer to the first element of an array, but it may not return
a value that has a type of array or function.

The exception_specification limits the function from throwing only a
specified list of exceptions.

Some declarations do not name the parameters within the parameter lists; the
declarations simply specify the types of parameters and the return values. This is
called prototyping. The following example demonstrates this:

int
func(int,long);

Function Declarations
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The ellipsis (...) may be the only argument in C++. In this case, the
comma is not required. In C, you cannot have the ellipsis as the only argument.

Types cannot be defined in return or argument types. For example, the C++
compiler will allow the following declaration of print():
struct X { int i; };
void print(X x);

Similarly, the C compiler will allow the following declaration:
struct X { int i; };
void print(struct X x);

The C and C++ compilers will not allow the following declaration of the same
function:
void print(struct X { int i; } x); //error

This example attempts to declare a function print() that takes an object x of class
X as its argument. However, the class definition is not allowed within the argument
list.

In another example, the C++ compiler will allow the following declaration of
counter():
enum count {one, two, three};
count counter();

Similarily the C compiler will allow the following declaration:
enum count {one, two, three};
enum count counter();

The C and C++ compilers will not allow the following declaration of the same
function:
enum count{one, two, three} counter(); //error

In the attempt to declare counter(), the enumeration type definition cannot appear
in the return type of the function declaration.

v “volatile and const Qualifiers” on page 69
v “Exception Specifications” on page 412

C++ Function Declarations

In C++, you can specify the qualifiers volatile and const in member
function declarations. You can also specify exception specifications in function
declarations. All C++ functions must be declared before they can be called.

v “volatile and const Qualifiers” on page 69
v “const and volatile Member Functions” on page 296
v “Exception Specifications” on page 412

Multiple Function Declarations
All function declarations for one particular function must have the same

number and type of parameters, and must have the same return type.

Function Declarations
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These return and parameter types are part of the function type, although the default
arguments and exception specifications are not.

If a previous declaration of an object or function is visible in an enclosing scope, the
identifier has the same linkage as the first declaration. For example, a variable or
function that is first declared with the keyword static and later declared with the
keyword extern has internal linkage. However, a variable or function that has no
linkage and later declared with a linkage specifier will have the linkage you have
specified.

For the purposes of argument matching, ellipsis and linkage keywords are
considered a part of the function type. They must be used consistently in all
declarations of a function. If the only difference between the parameter types in two
declarations is in the use of typedef names or unspecified argument array bounds,
the declarations are the same. A const or volatile specifier is also part of the
function type, but can only be part of a declaration or definition of a nonstatic
member function.

You may overload function names. An overloaded function declaration is a
declaration that had been declared with the same name as a previously declared
declaration in the same scope, except that both declarations have different types. If
you call an overloaded function name, the compiler determines the most
appropriate definition to use by comparing the argument types you used to call the
function or operator with the parameter types specified in the definitions.

Declaring two functions differing only in return type is not valid function overloading,
and is flagged as an error. For example:
void f();
int f(); // error, two definitions differ only in

// return type
int g()
{

return f();
}

v “Overloading Functions” on page 269

Argument Names in Function Declarations
You can supply parameter names in a function declaration, but the compiler

ignores them except in the following two situations:

1. If two parameter names have the same name within a single declaration. This is
an error.

2. If a parameter name is the same as a name outside the function. In this case
the name outside the function is hidden and cannot be used in the parameter
declaration.

In the following example, the third parameter name intersects is meant to have
enumeration type subway_line, but this name is hidden by the name of the first
parameter. The declaration of the function subway() causes a compile-time error
because subway_line is not a valid type name because the first parameter name
subway_line hides the namespace scope enum type and cannot be used again in
the second parameter.

Function Declarations
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enum subway_line {yonge,
university, spadina, bloor};
int subway(char * subway_line, int stations,

subway_line intersects);

v “Function Declarations” on page 154

Examples of Function Declarations
The following code fragments show several function declarations. The first declares
a function f that takes two integer arguments and has a return type of void:

void f(int, int);

The following code fragment declares a pointer p1 to a function that takes a pointer
to a constant character and returns an integer:

int (*p1) (const char*);

The following code fragment declares a function f1 that takes an integer argument,
and returns a pointer to a function that takes an integer argument and returns an
integer:

int (*f1(int)) (int);

Alternatively, a typedef can be used for the complicated return type of function f1:
typedef int f1_return_type(int);
f1_return_type* f1(int);

The following declaration is of an external function f2 that takes a constant
integer as its first argument, can have a variable number and variable types of other
arguments, and returns type int.

int extern f2(const int ...);

In C, a comma is required before the ellipsis:
int extern f2(const int, ...);

Function f3 has a return type int, and takes a int argument with a default value that
is the value returned from function f2:

const int j = 5;
int f3( int x = f2(j) );

Function f6 is a const class member function of class X, takes no
arguments, and has a return type of int:
class X
{
public:

int f6() const;
};

Function f4 takes no arguments, has return type void, and can throw class
objects of types X and Y.
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class X;
class Y;

// ...

void f4() throw(X,Y);

Function f5 takes no arguments, has return type void, and will call
unexpected() if it throws an exception of any type.
void f5() throw();

v “Default Arguments in C++ Functions” on page 169
v “const and volatile Member Functions” on page 296
v “Exception Specifications” on page 412
v “extern Storage Class Specifier” on page 37
v “Chapter 4. Declarators” on page 73

Function Definitions
A function definition contains a function declaration and the body of a function.

��
extern
static

type_specifier
function_name ( �

� �

,

parameter_declaration , ...
) �

�
: constructor_initializer_list
const
volatile

exception_specification
�

� block_statement ��

A function definition contains the following:
v An optional storage class specifier extern or static, which determines the scope

of the function. If a storage class specifier is not given, the function has external
linkage.

v
A type specifier, which determines the type of value that the function returns.

In C, the type specifier is optional. If a type specifier is not given, the
function has type int.

The type specifier is not optional in C++.
v

A function declarator, which is the function name followed by a parenthesized list
of parameter types and names. It can further describe the type of the value that

Function Declarations

158 C/C++ Language Reference



the function returns, and lists the type and name of each parameter that the
function expects. In the following function definition, f(int a, int b) is the
function declarator:
int f(int a, int b) {

return a + b;
}

v Optional const or volatile specifiers after the function declarator. Only
member functions may have these.

v An optional exception specification, which limits the function from
throwing only a specified list of exceptions.

v
A block statement, which contains data definitions and code.

You can also have a function try block instead of a block statement. If the
function definition is a constructor, you can have a constructor initializer list
before the block statement. In the following class definition, x(0), y('c') is a
constructor initializer list:
class A {

int x;
char y;

public:
A() : x(0), y('c') { }

};

A function can be called by itself or by other functions. By default, function
definitions have external linkage, and can be called by functions defined in other
files. A storage class specifier of static means that the function name has global
scope only, and can be directly invoked only from within the same translation unit.

This use of static is deprecated in C++. Instead, place the function in the
unnamed namespace.

In C only, if a function definition has external linkage and a return type of
int, calls to the function can be made before it is visible because an implicit
declaration of extern int func(); is assumed.

All declarations for a given function must be compatible; that is, the return type is
the same and the parameters have the same type. Note that overloaded functions
have the same name.

The default type for the return value and parameters of a function is int, and
the default storage class specifier is extern. If the function does not return a value,
use the keyword void as the type specifier. You can use the keyword void as a
parameter declaration to indicate the function is not passed any arguments.

A function cannot return a function, array, or object with a volatile or const type,
but it can return a pointer to these or any other types.

In C, you cannot declare a function as a struct or union member.

In C, a function cannot return any type having the volatile or const qualifier.
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You cannot define an array of functions. You can, however, define an array of
pointers to functions.

The following example is a definition of the function sum:
int sum(int x,int y)
{

return(x + y);
}

The function sum has external linkage, returns an object that has type int, and has
two parameters of type int declared as x and y. The function body contains a
single statement that returns the sum of x and y.

In the following example, ary is an array of two function pointers. Type casting is
performed to the values assigned to ary for compatibility:
#include <stdio.h>

typedef void (*ARYTYPE)();

int func1(void);
void func2(double a);

int main(void)
{

double num = 333.3333;
int retnum;
ARYTYPE ary[2];
ary[0]=(ARYTYPE)func1;
ary[1]=(ARYTYPE)func2;

retnum=((int (*)())ary[0])(); /* calls func1 */
printf("number returned = %i\n", retnum);
((void (*)(double))ary[1])(num); /* calls func2 */

return(0);
}

int func1(void)
{

int number=3;
return number;

}

void func2(double a)
{

printf("result of func2 = %f\n", a);
}

The following is the output of the above example:
number
returned = 3
result of func2 = 333.333300

v “extern Storage Class Specifier” on page 37
v “static Storage Class Specifier” on page 42
v “Block Statement” on page 179
v “Pointers” on page 81
v “References” on page 92
v “Structures” on page 51
v “Unions” on page 59
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v “volatile and const Qualifiers” on page 69

Ellipsis and void
An ellipsis at the end of the parameter specifications is used to specify that a
function has a variable number of parameters. The number of parameters is equal
to, or greater than, the number of parameter specifications. At least one parameter
declaration must come before the ellipsis.

int f(int, ...);

The comma before the ellipsis is optional. In addition, a parameter
declaration is not required before the ellipsis.

The comma before the ellipsis as well as a parameter declaration before the
ellipsis are both required in C.

Parameter promotions are performed as needed, but no type checking is done on
the variable arguments.

You can declare a function with no arguments in two ways:
int f(void);
int f();

An empty argument declaration list or the argument declaration list of
(void) indicates a function that takes no arguments.

An empty argument declaration list means that the function may take any
number or type of parameters.

The type void cannot be used as an argument type, although types derived from
void (such as pointers to void) can be used.

In the following example, the function f() takes one integer argument and returns
no value, while g() expects no arguments and returns an integer.

void f(int);
int g(void);

v “void Type” on page 50

Examples of Function Definitions
The following example contains a function declarator i_sort with table declared as
a pointer to int and length declared as type int. Note that arrays as parameters
are implicitly converted to a pointer to the element type.

CCNRAAU
/**
** This example illustrates function definitions.
** Note that arrays as parameters are implicitly
** converted to a pointer to the type.
**/

#include <stdio.h>

void i_sort(int table[ ], int length);
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int main(void)
{

int table[ ]={1,5,8,4};
int length=4;
printf("length is %d\n",length);
i_sort(table,length);

}

void i_sort(int table[ ], int length)
{

int i, j, temp;

for (i = 0; i < length -1; i++)
for (j = i + 1; j < length; j++)

if (table[i] > table[j])
{

temp = table[i];
table[i] = table[j];
table[j] = temp;

}
}

The following are examples of function declarations (also called function
prototypes):
double square(float x);
int area(int x,int y);
static char *search(char);

The following example illustrates how a typedef identifier can be used in a function
declarator:
typedef struct tm_fmt { int minutes;

int hours;
char am_pm;

} struct_t;
long time_seconds(struct_t arrival)

The following function set_date declares a pointer to a structure of type date as a
parameter. date_ptr has the storage class specifier register.
void set_date(register struct date *date_ptr)
{

date_ptr->mon = 12;
date_ptr->day = 25;
date_ptr->year = 87;

}

v “Block Statement” on page 179
v “Function Definitions” on page 158
v “Function Declarations” on page 154

The main() Function
When a program begins running, the system calls the function main, which marks
the entry point of the program. Every program must have one function named main.
No other function in the program can be called main. A main function has one of
two forms:

v int main ( void ) block_statement

v int main ( ) block_statement
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v int main ( int argc , char ** argv ) block_statement

The argument argc is the number of command-line arguments passed to the
program. The argument argv is a pointer to an array of strings, where argv[0] is
the name you used to run your program from the command-line, argv[1] the first
argument that you passed to your program, argv[2] the second argument, and so
on.

By default, main has the storage class extern.

You cannot declare main as inline or static. You cannot call main from
within a program or take the address of main. You cannot overload this function.

v “extern Storage Class Specifier” on page 37
v “Inline Functions” on page 174
v “static Storage Class Specifier” on page 42

Arguments to main
The function main can be declared with or without parameters.
int main(int argc, char *argv[])

Although any name can be given to these parameters, they are usually referred to
as argc and argv.

The first parameter, argc (argument count), has type int and indicates how many
arguments were entered on the command line.

The second parameter, argv (argument vector), has type array of pointers to char
array objects. char array objects are null-terminated strings.

The value of argc indicates the number of pointers in the array argv. If a program
name is available, the first element in argv points to a character array that contains
the program name or the invocation name of the program that is being run. If the
name cannot be determined, the first element in argv points to a null character.

This name is counted as one of the arguments to the function main. For example, if
only the program name is entered on the command line, argc has a value of 1 and
argv[0] points to the program name.

Regardless of the number of arguments entered on the command line, argv[argc]
always contains NULL.

v “Integer Variables” on page 49
v “char and wchar_t Type Specifiers” on page 45

Example of Arguments to main
The following program backward prints the arguments entered on a command line
such that the last argument is printed first:

main
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#include <stdio.h>
int main(int argc, char *argv[])
{

while (--argc > 0)
printf(“%s ”, argv[argc]);

}

Invoking this program from a command line with the following:
backward string1 string2

gives the following output:
string2 string1

The arguments argc and argv would contain the following values:

Object Value

argc 3
argv[0] pointer to string “backward”
argv[1] pointer to string “string1”
argv[2] pointer to string “string2”
argv[3] NULL

Note: Be careful when entering mixed case characters on a command line
because some environments are not case sensitive. Also, the exact format of
the string pointed to by argv[0] is system dependent.

v “Calling Functions and Passing Arguments”
v “Type Specifiers” on page 44
v “Identifiers” on page 18
v “Block Statement” on page 179

Calling Functions and Passing Arguments
The arguments of a function call are used to initialize the parameters of the function
definition.

Integral and floating-point promotions will first be done to the values of the
arguments before the function is called.

The type of an argument is checked against the type of the corresponding
parameter in the function declaration. All standard and user-defined type
conversions are applied as necessary.

For example:
#include <stdio.h>
#include <math.h>

/* Declaration */
extern double root(double, double);

/* Definition */
double root(double value, double base) {

double temp = exp(log(value)/base);
return temp;

}

main
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int main(void) {
int value = 144;
int base = 2;
printf("The root is: %f\n", root(value, base));
return 0;

}

The output is The root is: 12.000000

In the above example, because the function root is expecting arguments of type
double, the two int arguments value and base are implicitly converted to type
double when the function is called.

The order in which arguments are evaluated and passed to the function is
implementation-defined. For example, the following sequence of statements calls
the function tester:
int x;
x = 1;
tester(x++, x);

The call to tester in the example may produce different results on different
compilers. Depending on the implementation, x++ may be evaluated first or x may
be evaluated first. To avoid the ambiguity and have x++ evaluated first, replace the
preceding sequence of statements with the following:
int x, y;
x = 1;
y = x++;
tester(y, x);

In C++, if a nonstatic class member function is passed as an argument, the
argument is converted to a pointer to member.

If a class has a destructor or a copy constructor that does more than a
bitwise copy, passing a class object by value results in the construction of a
temporary that is actually passed by reference.

It is an error when a function argument is a class object and all of the
following properties hold:
v The class needs a copy constructor.
v The class does not have a user-defined copy constructor.
v A copy constructor cannot be generated for that class.

You cannot pass a packed structure argument to a function that expects a
nonpacked structure of the same type and vice versa. (The same applies to packed
and nonpacked unions.)

v “Function Calls ( )” on page 104
v “Integral and Floating-Point Promotions” on page 143
v “Constructors” on page 342

Command-Line Arguments (z/OS)

The maximum allowable length of a command-line argument for z/OS
Language Environment is 64K.

Calling Functions and Passing Arguments
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z/OS C/C++ treats arguments that you enter on the command line differently in
different environments. The following lists how argv and argc are handled.

Under z/OS Batch
argc Returns the number of strings in the argument line

argv[0] Returns the program name in uppercase

argv[1 to n] Returns the arguments as you enter them

Under IMS
argc Returns 1

argv[0] Is a null pointer

Under CICS
argc Returns 1

argv[0] Returns the transaction ID

Under TSO Command
argc Returns the number of strings in the argument line

argv[0] Returns the program name in uppercase

argv[1 to n] Returns the arguments exactly as you enter them

Under TSO Call
Without the ASIS option:

argc Returns the number of strings in the argument line

argv Returns the program name and arguments in
lowercase

With the ASIS option:

argc Returns the number of strings in the argument line

argv[0] Returns the program name in uppercase

argv[1 to n] Arguments entered in uppercase are returned in
lowercase. Arguments entered in mixed or
lowercase are returned as entered.

Under z/OS UNIX Shell
argc Returns the number of strings in the argument line

argv[0] Returns the program name as you enter it

argv[1 to n] Returns the arguments exactly as you enter them

The only delimiter for the arguments that are passed to main() is white space. z/OS
C/C++ uses commas passed to main() by JCL as arguments and not as delimiters.

The following example appends the comma to the 'one' when passed to main().
//FUNC EXEC PCGO,GPGM='FUNC',
// PARM.GO=('one',
// 'two')

For more information on restrictions of the command-line arguments, refer to z/OS
C/C++ User’s Guide.

Command-Line Arguments
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v “Calling Functions and Passing Arguments” on page 164
v “Type Specifiers” on page 44
v “Identifiers” on page 18
v “Block Statement” on page 179

Passing Arguments by Value
If you call a function with an argument that corresponds to a non-reference
parameter, you have passed that argument by value. The parameter is initialized
with the value of the argument. You can change the value of the parameter (if that
parameter has not been declared const) within the scope of the function, but these
changes will not affect the value of the argument in the calling function.

The following are examples of passing arguments by value:

The following statement calls the function printf, which receives a character string
and the return value of the function sum, which receives the values of a and b:
printf("sum = %d\n", sum(a,b));

The following program passes the value of count to the function increment, which
increases the value of the parameter x by 1.

CCNRAAX
/**
** An example of passing an argument to a function
**/

#include <stdio.h>

void increment(int);

int main(void)
{

int count = 5;

/* value of count is passed to the function */
increment(count);
printf("count = %d\n", count);

return(0);
}

void increment(int x)
{

++x;
printf("x = %d\n", x);

}

The output illustrates that the value of count in main remains unchanged:
x = 6
count = 5

v “Function Calls ( )” on page 104

Passing Arguments by Reference
Passing by reference refers to a method of passing arguments where the value of
an argument in the calling function can be modified in the called function.
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To pass an argument by reference, you declare the corresponding parameter with a
reference type.

The following example shows how arguments are passed by reference. Note that
reference parameters are initialized with the actual arguments when the function is
called.

CCNX06A
#include <stdio.h>

void swapnum(int &i, int &j) {
int temp = i;
i = j;
j = temp;

}

int main(void) {
int a = 10;
int b = 20;

swapnum(a, b);
printf("A is %d and B is %d\n", a, b);
return 0;

}

When the function swapnum() is called, the actual values of the variables a and b
are exchanged because they are passed by reference. The output is:
A is 20 and B is 10

You must define the parameters of swapnum() as references if you want the values
of the actual arguments to be modified by the function swapnum().

In order to modify a reference that is const- qualified, you must cast away
its constness with the const_cast operator. The following example demonstrates
this:
#include <iostream>
using namespace std;

void f(const int& x) {
int* y = const_cast<int>(&x);
(*y)++;

}

int main() {
int a = 5;
f(a);
cout << a << endl;

}

This example outputs 6.

You can modify the values of nonconstant objects through pointer parameters. The
following example demonstrates this:

CCNRAAY
#include <stdio.h>

int main(void)
{

void increment(int *x);
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int count = 5;

/* address of count is passed to the function */
increment(&count);
printf("count = %d\n", count);

return(0);
}

void increment(int *x)
{

++*x;
printf("*x = %d\n", *x);

}

The following is the output of the above code:
*x = 6
count = 6

The example passes the address of count to increment(). Function increment()
increments count through the pointer parameter x.

v “References” on page 92
v “const_cast Operator” on page 110

Default Arguments in C++ Functions

You can provide default values for function parameters. For example:

CCNX06B
#include <iostream>
using namespace std;

int a = 1;
int f(int a) { return a; }
int g(int x = f(a)) { return x; }

int h() {
a = 2;
{

int a = 3;
return g();

}
}

int main() {
cout << h() << endl;

}

This example prints 2 to standard output, because the a referred to in the
declaration of g() is the one at file scope, which has the value 2 when g() is called.

The default argument must be implicitly convertible to the parameter type.

A pointer to a function must have the same type as the function. Attempts to take
the address of a function by reference without specifying the type of the function will
produce an error. The type of a function is not affected by arguments with default
values.

Command-Line Arguments

Chapter 7. Functions 169

|



The following example shows that default arguments are not considered part of a
function’s type. The default argument allows you to call a function without specifying
all of the arguments, it does not allow you to create a pointer to the function that
does not specify the types of all the arguments. Function f can be called without an
explicit argument, but the pointer badpointer cannot be defined without specifying
the type of the argument:
int f(int = 0);
void g()
{

int a = f(1); // ok
int b = f(); // ok, default argument used

}
int (*pointer)(int) = &f; // ok, type of f() specified (int)
int (*badpointer)() = &f; // error, badpointer and f have

// different types. badpointer must
// be initialized with a pointer to
// a function taking no arguments.

v “Pointers to Functions” on page 173

Restrictions on Default Arguments
Of the operators, only the function call operator and the operator new can have
default arguments when they are overloaded.

Parameters with default arguments must be the trailing parameters in the function
declaration parameter list. For example:
void f(int a, int b = 2, int c = 3); // trailing defaults
void g(int a = 1, int b = 2, int c); // error, leading defaults
void h(int a, int b = 3, int c); // error, default in middle

Once a default argument has been given in a declaration or definition, you cannot
redefine that argument, even to the same value. However, you can add default
arguments not given in previous declarations. For example, the last declaration
below attempts to redefine the default values for a and b:
void f(int a, int b, int c=1); // valid
void f(int a, int b=1, int c); // valid, add another default
void f(int a=1, int b, int c); // valid, add another default
void f(int a=1, int b=1, int c=1); // error, redefined defaults

You can supply any default argument values in the function declaration or in the
definition. Any parameters in the parameter list following a default argument value
must have a default argument value specified in this or a previous declaration of the
function.

You cannot use local variables in default argument expressions. For example, the
compiler generates errors for both function g() and function h() below:
void f(int a)
{

int b=4;
void g(int c=a); // Local variable "a" cannot be used here
void h(int d=b); // Local variable "b" cannot be used here

}

v “Function Calls ( )” on page 104
v “C++ new Operator” on page 119
v “Default Arguments in C++ Functions” on page 169
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Evaluating Default Arguments
When a function defined with default arguments is called with trailing arguments
missing, the default expressions are evaluated. For example:
void f(int a, int b = 2, int c = 3); // declaration
// ...
int a = 1;
f(a); // same as call f(a,2,3)
f(a,10); // same as call f(a,10,3)
f(a,10,20); // no default arguments

Default arguments are checked against the function declaration and evaluated when
the function is called. The order of evaluation of default arguments is undefined.
Default argument expressions cannot use other parameters of the function. For
example:
int f(int q = 3, int r = q); // error

The argument r cannot be initialized with the value of the argument q because the
value of q may not be known when it is assigned to r. If the above function
declaration is rewritten:
int q=5;
int f(int q = 3, int r = q); // error

The value of r in the function declaration still produces an error because the
variable q defined outside of the function is hidden by the argument q declared for
the function. Similarly:
typedef double D;
int f(int D, int z = D(5.3) ); // error

Here the type D is interpreted within the function declaration as the name of an
integer. The type D is hidden by the argument D. The cast D(5.3) is therefore not
interpreted as a cast because D is the name of the argument not a type.

In the following example, the nonstatic member a cannot be used as an initializer
because a does not exist until an object of class X is constructed. You can use the
static member b as an initializer because b is created independently of any objects
of class X. You can declare the member b after its use as a default argument
because the default values are not analyzed until after the final bracket } of the
class declaration.
class X
{

int a;
f(int z = a) ; // error
g(int z = b) ; // valid
static int b;

};

v “Default Arguments in C++ Functions” on page 169

Function Return Values
You must return a value from a function unless the function has a return type of
void.
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All functions must return a value, including those that have a return type of
void.The return value is specified in a return statement. The following code
fragment shows a function definition, including the return statement:
int add(int i, int j)
{

return i + j; // return statement
}

The function add() can be called as shown in the following code fragment:
int a = 10,

b = 20;
int answer = add(a, b); // answer is 30

In this example, the return statement initializes a variable of the returned type. The
variable answer is initialized with the int value 30. The type of the returned
expression is checked against the returned type. All standard and user-defined
conversions are performed as necessary.

The following return statements show different ways of returning values to a caller:
return; // Returns no value
return result; // Returns the value of result
return 1; // Returns the value 1
return (x * x); // Returns the value of x * x

Each time a function is called, new copies of its variables with automatic storage
are created. Because the storage for these automatic variables may be reused after
the function has terminated, a pointer or reference to an automatic variable should
not be returned.

If a class object is returned, a temporary object may be created if the class
has copy constructors or a destructor.

v “auto Storage Class Specifier” on page 35
v “Temporary Objects” on page 357
v “Destructors” on page 350

Using References as Return Types
References can also be used as return types for functions. The reference returns
the lvalue of the object to which it refers. This allows you to place function calls on
the left side of assignment statements.

Referenced return values are used when assignment operators and
subscripting operators are overloaded so that the results of the overloaded
operators can be used as actual values.

Note: Returning a reference to an automatic variable gives unpredictable results.

v “Overloading Assignments” on page 274
v “Overloading Subscripting” on page 277
v “auto Storage Class Specifier” on page 35
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Pointers to Functions
A pointer to a function points to the address of the executable code of the function.
You can use pointers to call functions and to pass functions as arguments to other
functions. You cannot perform pointer arithmetic on pointers to functions.

For z/OS C/C++, use the __cdecl keyword to declare a pointer to a function
as a C linkage. For more information, refer to “__cdecl Keyword (z/OS C++ Only)”
on page 75.

The type of a pointer to a function is based on both the return type and parameter
types of the function.

A declaration of a pointer to a function must have the pointer name in parentheses.
The function call operator () has a higher precedence than the dereference
operator *. Without them, the compiler interprets the statement as a function that
returns a pointer to a specified return type. For example:
int *f(int a); // function f returning an int*
int (*g)(int a); // pointer g to a function returning an int

In the first declaration, f is interpreted as a function that takes an int as argument,
and returns a pointer to an int. In the second declaration, g is interpreted as a
pointer to a function that takes an int argument and that returns an int.

Under z/OS C/C++, if you pass a function pointer to a function, or the
function returns a function pointer, the declared or implied linkages must be the
same. Use the extern keyword with declarations in order to specify different
linkages.

The following example illustrates the correct and incorrect uses of function pointers
under z/OS C/C++ :
#include <stdlib.h>

extern "C" int cf();
extern "C++" int cxxf(); // C++ is included here for clarity;

// it is not required; if it is
// omitted, cxxf() will still have
// C++ linkage.

extern "C" int (*c_fp)();
extern "C++" int (*cxx_fp)();
typedef int (*dft_fp_T)();
typedef int (dft_f_T)();

extern "C" {
typedef void (*cfp_T)();
typedef int (*cf_pT)();
void cfn();
void (*cfp)();

}

extern "C++" {
typedef int (*cxxf_pT)();
void cxxfn();
void (*cxxfp)();

}

extern "C" void f_cprm(int (*f)()) {
int (*s)() = cxxf; // error, incompatible linkages-cxxf has

// C++ linkage, s has C linkage as it
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// is included in the extern "C" wrapper
cxxf_pT j = cxxf; // valid, both have C++ linkage
int (*i)() = cf; // valid, both have C linkage

}

extern "C++" void f_cxprm(int (*f)()) {
int (*s)() = cf; // error, incompatible linkages-cf has C

// linkage, s has C++ linkage as it is
// included in the extern "C++" wrapper

int (*i)() = cxxf; // valid, both have C++ linkage
cf_pT j = cf; // valid, both have C linkage

}

main() {

c_fp = cxxf; // error - c_fp has C linkage and cxxf has
// C++ linkage

cxx_fp = cf; // error - cxx_fp has C++ linkage and
// cf has C linkage

dft_fp_T dftfpT1 = cf; // error - dftfpT1 has C++ linkage and
// cf has C linkage

dft_f_T *dftfT3 = cf; // error - dftfT3 has C++ linkage and
// cf has C linkage

dft_fp_T dftfpT5 = cxxf; // valid
dft_f_T *dftfT6 = cxxf; // valid

c_fp = cf; // valid
cxx_fp = cxxf; // valid
f_cprm(cf); // valid
f_cxprm(cxxf); // valid

// The following errors are due to incompatible linkage of function
// arguments, type conversion not possible
f_cprm(cxxf); // error - f_cprm expects a parameter with

// C linkage, but cxxf has C++ linkage
f_cxprm(cf); // error - f_cxprm expects a parameter

// with C++ linkage, but cf has C linkage
}

For z/OS, linkage compatibility affects all C library functions that accept a function
pointer as a parameter. The qsort() function is an example of these functions.

v “Pointers” on page 81
v “Pointer Conversions” on page 146
v “extern Storage Class Specifier” on page 37

Inline Functions

A function is declared inline by using the inline function specifier or by
defining a member function within a class or structure definition.

The inline specifier is a suggestion to the compiler that an inline expansion can be
performed. Instead of transferring control to and from the function code segment, a
modified copy of the function body may be substituted directly for the function call.

An inline function can be declared and defined simultaneously. If it is declared with
the keyword inline, it can be declared without a definition. The following code
fragment shows an inline function definition. Note that the definition includes both
the declaration and body of the inline function.
inline int add(int i, int j) { return i + j; }
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Both member and nonmember functions can be inline, and both have external
linkage by default.

The use of the inline specifier does not change the meaning of the function. The
inline expansion of a function may not preserve the order of evaluation of the actual
arguments.

v “Member Functions” on page 295

Inline Functions
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Chapter 8. Statements

A statement is the smallest independent computational unit. The following is a
summary of the statements available in C and C++:
v labeled statements

– identifier labels
– case labels
– default labels

v expression statements
v blocks or compound statements
v selection statements

– if statements
– switch statements

v iteration statements
– while statements
– do statements
– for statements

v jump statements
– break statements
– continue statements
– return statements
– goto statements

v declaration statements

v try blocks

Labels
There are three kinds of labels: identifier, case, and default.

Identifier label statements have the following form:

�� identifier : statement ��

The label consists of the identifier and the colon (:) character. An identifier label is
only used as the the target of a goto statement. Identifier labels have their own
namespace; you do not have to worry about identifier labels conflicting with other
identifiers.

Case statements have the following form:

�� case constant_expression : statement ��

Default label statements have the following form:

�� default : statement ��

Case and default label statements only appear in switch statements.

Examples of Labels
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comment_complete : ; /* null statement label */
test_for_null : if (NULL == pointer)

v “goto Statement” on page 193
v “switch Statement” on page 182

Expression Statements
An expression statement contains an expression. The expression can be null.

An expression statement has the form:

��
expression

; ��

An expression statement evaluates expression, then discards the value of the
expression. An expression statement without an expression is a null statement.

Examples of Expressions
printf("Account Number: \n"); /* call to the printf */
marks = dollars * exch_rate; /* assignment to marks */
(difference < 0) ? ++losses : ++gain; /* conditional increment */

v “Chapter 5. Expressions and Operators” on page 95

Resolving Ambiguous Statements in C++

The C++ syntax does not disambiguate between expression statements and
declaration statements. The ambiguity arises when an expression statement has a
function-style cast as its left-most subexpression. (Note that, because C does not
support function-style casts, this ambiguity does not occur in C programs.) If the
statement can be interpreted both as a declaration and as an expression, the
statement is interpreted as a declaration statement.

Note: The ambiguity is resolved only on a syntactic level. The disambiguation does
not use the meaning of the names, except to assess whether or not they are
type names.

The following expressions disambiguate into expression statements because the
ambiguous subexpression is followed by an assignment or an operator. type_spec
in the expressions can be any type specifier:
type_spec(i)++; // expression statement
type_spec(i,3)<<d; // expression statement
type_spec(i)->l=24; // expression statement

In the following examples, the ambiguity cannot be resolved syntactically, and the
statements are interpreted as declarations. type_spec is any type specifier:
type_spec(*i)(int); // declaration
type_spec(j)[5]; // declaration
type_spec(m) = { 1, 2 }; // declaration
type_spec(*k) (float(3)); // declaration

Labels
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The last statement above causes a compile-time error because you cannot initialize
a pointer with a float value.

Any ambiguous statement that is not resolved by the above rules is by default a
declaration statement. All of the following are declaration statements:
type_spec(a); // declaration
type_spec(*b)(); // declaration
type_spec(c)=23; // declaration
type_spec(d),e,f,g=0; // declaration
type_spec(h)(e,3); // declaration

v “Chapter 3. Declarations” on page 33
v “Chapter 5. Expressions and Operators” on page 95
v “Function Calls ( )” on page 104

Block Statement
A block statement, or compound statement, lets you group any number of data
definitions, declarations, and statements into one statement. All definitions,
declarations, and statements enclosed within a single set of braces are treated as a
single statement. You can use a block wherever a single statement is allowed.

A block statement has the form:

�� � �{ }
type_definition statement
file_scope_data_declaration
block_scope_data_declaration

��

In C, Any definitions and declarations must come before the statements.

A block defines a local scope. If a data object is usable within a block and its
identifier is not redefined, all nested blocks can use that data object.

Example of Blocks

The following program shows how the values of data objects change in nested
blocks:
/**
** This example shows how data objects change in nested blocks.
**/
#include <stdio.h>

int main(void)
{

int x = 1; /* Initialize x to 1 */
int y = 3;

if (y > 0)
{

int x = 2; /* Initialize x to 2 */
printf("second x = %4d\n", x);

}

Expression
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printf("first x = %4d\n", x);

return(0);
}

The program produces the following output:
second x = 2
first x = 1

Two variables named x are defined in main. The first definition of x retains storage
while main is running. However, because the second definition of x occurs within a
nested block, printf("second x = %4d\n", x); recognizes x as the variable
defined on the previous line. Because printf("first x = %4d\n", x); is not part of
the nested block, x is recognized as the first definition of x.

v “Storage Class Specifiers” on page 34
v “Type Specifiers” on page 44

if Statement

An if statement lets you conditionally process a statement when the
specified test expression, implicitly converted to bool, evaluates to true. If the
implicit conversion to bool fails the program is ill-formed.

In C, an if statement lets you conditionally process a statement when the
specified test expression evaluates to a nonzero value. The test expression must be
of arithmetic or pointer type.

You can optionally specify an else clause on the if statement. If the test expression
evaluates to false (or in C, a zero value) and an else clause exists, the statement
associated with the else clause runs. If the test expression evaluates to true, the
statement following the expression runs and the else clause is ignored.

An if statement has the form:

�� if ( expression ) statement
else statement

��

When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

A single statement following any selection statements (if, switch) is treated as a
compound statement containing the original statement. As a result any variables
declared on that statement will be out of scope after the if statement. For example:
if (x)
int i;

is equivalent to:
if (x)
{ int i; }

Block Statement
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Variable i is visible only within the if statement. The same rule applies to the else
part of the if statement.

Examples of if Statements

The following example causes grade to receive the value A if the value of score is
greater than or equal to 90.
if (score >= 90)

grade = 'A';

The following example displays Number is positive if the value of number is greater
than or equal to 0. If the value of number is less than 0, it displays Number is
negative.
if (number >= 0)

printf("Number is positive\n");
else

printf("Number is negative\n");

The following example shows a nested if statement:
if (paygrade == 7)

if (level >= 0 && level <= 8)
salary *= 1.05;

else
salary *= 1.04;

else
salary *= 1.06;

cout << "salary is " << salary << endl;

The following example shows a nested if statement that does not have an else
clause. Because an else clause always associates with the closest if statement,
braces might be needed to force a particular else clause to associate with the
correct if statement. In this example, omitting the braces would cause the else
clause to associate with the nested if statement.
if (kegs > 0) {

if (furlongs > kegs)
fpk = furlongs/kegs;

}
else

fpk = 0;

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. The tests are made in order of their appearance.
If one test evaluates to a nonzero value, a statement runs and the entire if
statement ends.
if (value > 0)

++increase;
else if (value == 0)

++break_even;
else

++decrease;

v “Boolean Variables” on page 46

if Statement

Chapter 8. Statements 181



switch Statement
A switch statement lets you transfer control to different statements within the switch
body depending on the value of the switch expression. The switch expression must
evaluate to an integral or enumeration value. The body of the switch statement
contains case clauses that consist of
v A case label
v An optional default label
v A case expression
v A list of statements.

If the value of the switch expression equals the value of one of the case
expressions, the statements following that case expression are processed. If not,
the default label statements, if any, are processed.

A switch statement has the form:

�� switch ( expression ) switch_body ��

The switch body is enclosed in braces and can contain definitions, declarations,
case clauses, and a default clause. Each case clause and default clause can
contain statements.

�� { �

type_definition
file_scope_data_declaration
block_scope_data_declaration

�

case_clause
�

�
default_clause

�

case_clause
} ��

Note: An initializer within a type_definition, file_scope_data_declaration or
block_scope_data_declaration is ignored.

A case clause contains a case label followed by any number of statements. A case
clause has the form:

�� case_label � statement ��

A case label contains the word case followed by an integral constant expression
and a colon. The value of each integral constant expression must represent a
different value; you cannot have duplicate case labels. Anywhere you can put one
case label, you can put multiple case labels. A case label has the form:

switch Statement
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�� � case integral_constant_expression : ��

A default clause contains a default label followed by one or more statements. You
can put a case label on either side of the default label. A switch statement can
have only one default label. A default_clause has the form:

��
case_label

default :
case_label

� statement ��

The switch statement passes control to the statement following one of the labels or
to the statement following the switch body. The value of the expression that
precedes the switch body determines which statement receives control. This
expression is called the switch expression.

The value of the switch expression is compared with the value of the expression in
each case label. If a matching value is found, control is passed to the statement
following the case label that contains the matching value. If there is no matching
value but there is a default label in the switch body, control passes to the default
labelled statement. If no matching value is found, and there is no default label
anywhere in the switch body, no part of the switch body is processed.

When control passes to a statement in the switch body, control only leaves the
switch body when a break statement is encountered or the last statement in the
switch body is processed.

If necessary, an integral promotion is performed on the controlling expression, and
all expressions in the case statements are converted to the same type as the
controlling expression. The switch expression can also be of class type if there is a
single conversion to integral or enumeration type.

You can put data definitions at the beginning of the switch body, but the compiler
does not initialize auto and register variables at the beginning of a switch body.
You can have declarations in the body of the switch statement.

You cannot use a switch statement to jump over initializations.

In C++, you cannot transfer control over a declaration containing an explicit
or implicit initializer unless the declaration is located in an inner block that is
completely bypassed by the transfer of control. All declarations within the body of a
switch statement that contain initializers must be contained in an inner block.

Examples of switch Statements

The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

switch Statement
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If the switch expression evaluated to '/', the switch statement would call the
function divide. Control would then pass to the statement following the switch
body.
char key;

printf("Enter an arithmetic operator\n");
scanf("%c",&key);

switch (key)
{

case '+':
add();
break;

case '-':
subtract();
break;

case '*':
multiply();
break;

case '/':
divide();
break;

default:
printf("invalid key\n");
break;

}

If the switch expression matches a case expression, the statements following the
case expression are processed until a break statement is encountered or the end
of the switch body is reached. In the following example, break statements are not
present. If the value of text[i] is equal to 'A', all three counters are incremented.
If the value of text[i] is equal to 'a', lettera and total are increased. Only total
is increased if text[i] is not equal to 'A' or 'a'.
char text[100];
int capa, lettera, total;

// ...

for (i=0; i<sizeof(text); i++) {

switch (text[i])
{

case 'A':
capa++;

case 'a':
lettera++;

default:
total++;

}
}

The following switch statement performs the same statements for more than one
case label:

CCNRAB1
/**
** This example contains a switch statement that performs
** the same statement for more than one case label.
**/

switch Statement
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#include <stdio.h>

int main(void)
{

int month;

/* Read in a month value */
printf("Enter month: ");
scanf("%d", &month);

/* Tell what season it falls into */
switch (month)
{

case 12:
case 1:
case 2:

printf("month %d is a winter month\n", month);
break;

case 3:
case 4:
case 5:

printf("month %d is a spring month\n", month);
break;

case 6:
case 7:
case 8:

printf("month %d is a summer month\n", month);
break;

case 9:
case 10:
case 11:

printf("month %d is a fall month\n", month);
break;

case 66:
case 99:
default:

printf("month %d is not a valid month\n", month);
}

return(0);
}

If the expression month has the value 3, control passes to the statement:
printf("month %d is a spring month\n",
month);

The break statement passes control to the statement following the switch body.

v “break Statement” on page 190

switch Statement

Chapter 8. Statements 185



while Statement
A while statement repeatedly runs the body of a loop until the controlling expression
evaluates to false (or 0 in C).

A while statement has the form:

�� while ( expression ) statement ��

The expression is evaluated to determine whether or not to process the body of the
loop.

The expression must be convertible to bool.

The expression must be of arithmetic or pointer type.

If the expression evaluates to false, the body of the loop never runs. If the
expression does not evaluate to false, the loop body is processed. After the body
has run, control passes back to the expression. Further processing depends on the
value of the condition.

A break, return, or goto statement can cause a while statement to end, even
when the condition does not evaluate to false.

Example of while Statements

In the following program, item[index] triples and is printed out, as long as the
value of the expression ++index is less than MAX_INDEX. When ++index evaluates to
MAX_INDEX, the while statement ends.

CCNRAA7
/**
** This example illustrates the while statement.
**/

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))
#include <stdio.h>

int main(void)
{

static int item[ ] = { 12, 55, 62, 85, 102 };
int index = 0;

while (index < MAX_INDEX)
{

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);
++index;

}

return(0);
}

v “break Statement” on page 190
v “do Statement” on page 187

while Statement
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v “for Statement” on page 188
v “continue Statement” on page 190
v “return Statement” on page 192
v “goto Statement” on page 193
v “Boolean Variables” on page 46

do Statement
A do statement repeatedly runs a statement until the test expression evaluates to
false (or 0 in C). Because of the order of processing, the statement is run at least
once.

A do statement has the form:

�� do statement while ( expression ) ; ��

The controlling expression must convertible to type bool.

The expression must be of arithmetic or pointer type.

The body of the loop is run before the controlling while clause is evaluated. Further
processing of the do statement depends on the value of the while clause. If the
while clause does not evaluate to false, the statement runs again. When the while
clause evaluates to false, the statement ends.

A break, return, or goto statement can cause the processing of a do statement to
end, even when the while clause does not evaluate to false.

Example of do Statements

The following example keeps incrementing i while i is less than 5:
#include <stdio.h>

int main(void) {
int i = 0;
do {

i++;
printf("Value of i: %d\n", i);

}
while (i < 5);
return 0;

}

The following is the output of the above example:
Value of i: 1
Value of i: 2
Value of i: 3
Value of i: 4
Value of i: 5

v “break Statement” on page 190
v “return Statement” on page 192
v “goto Statement” on page 193
v “Boolean Variables” on page 46
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for Statement
A for statement lets you do the following:
v Evaluate an expression before the first iteration of the statement (initialization)
v Specify an expression to determine whether or not the statement should be

processed (the condition)
v Evaluate an expression after each iteration of the statement (often used to

increment for each iteration)
v Repeatedly process the statement if the controlling part does not evaluate to

false (or 0 in C).

A for statement has the form:

�� for ( ; ; )
expression1 expression2 expression3

�

� statement ��

Expression1 Is the initialization expression. It is evaluated only before the
statement is processed for the first time. You can use this
expression to initialize a variable. If you do not want to evaluate an
expression prior to the first iteration of the statement, you can omit
this expression.

Expression2 Is the conditional expression. It is evaluated before each iteration of
the statement.

It must evaluate to an arithmetic or pointer type.

If it evaluates to false (or 0 in C), the statement is not processed
and control moves to the next statement following the for
statement. If expression2 does not evaluate to false, the statement
is processed. If you omit expression2, it is as if the expression had
been replaced by true, and the for statement is not terminated by
failure of this condition.

Expression3 Is evaluated after each iteration of the statement. This expression is
often used for incrementing, decrementing, or assigning to a
variable. This expression is optional.

A break, return, or goto statement can cause a for statement to end, even when
the second expression does not evaluate to false. If you omit expression2, you
must use a break, return, or goto statement to end the for statement.

In C++ programs, you can also use expression1 to declare a variable as
well as initialize it. If you declare a variable in this expression, or anywhere else in
statement, that variable goes out of scope at the end of the for loop.

You can set a compile option where a variable declared in the scope of a
for statement is not local to the for statement.

Examples of for Statements

for Statement
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The following for statement prints the value of count 20 times. The for statement
initially sets the value of count to 1. After each iteration of the statement, count is
incremented.
int count;
for (count = 1; count <= 20; count++)

printf("count = %d\n", count);

The following sequence of statements accomplishes the same task. Note the use of
the while statement instead of the for statement.
int count = 1;
while (count <= 20)
{

printf("count = %d\n", count);
count++;

}

The following for statement does not contain an initialization expression:
for (; index > 10; --index)
{

list[index] = var1 + var2;
printf("list[%d] = %d\n", index,
list[index]);

}

The following for statement will continue running until scanf receives the letter e:
for (;;)
{

scanf("%c", &letter);
if (letter == '\n')

continue;
if (letter == 'e')

break;
printf("You entered the letter %c\n", letter);

}

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible. The first comma in the for
expression is a punctuator for a declaration. It declares and initializes two integers,
i and j. The second comma, a comma operator, allows both i and j to be
incremented at each step through the loop.
for (int i = 0,
j = 50; i < 10; ++i, j += 50)
{

cout << "i = " << i << "and j = " << j
<< endl;

}

The following example shows a nested for statement. It prints the values of an
array having the dimensions [5][3].
for (row = 0; row < 5; row++)

for (column = 0; column < 3; column++)
printf("%d\n",
table[row][column]);

The outer statement is processed as long as the value of row is less than 5. Each
time the outer for statement is executed, the inner for statement sets the initial
value of column to zero and the statement of the inner for statement is executed 3
times. The inner statement is executed as long as the value of column is less than
3.

for Statement
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v “break Statement”
v “return Statement” on page 192
v “goto Statement” on page 193
v “Boolean Variables” on page 46

break Statement
A break statement lets you end an iterative (do, for, or while) statement or a
switch statement and exit from it at any point other than the logical end. A break
may only appear on one of these statements.

A break statement has the form:

�� break ; ��

In an iterative statement, the break statement ends the loop and moves control to
the next statement outside the loop. Within nested statements, the break statement
ends only the smallest enclosing do, for, switch, or while statement.

In a switch statement, the break passes control out of the switch body to the next
statement outside the switch statement.

v “do Statement” on page 187
v “for Statement” on page 188
v “while Statement” on page 186
v “switch Statement” on page 182

continue Statement
A continue statement ends the current iteration of a loop. Program control is passed
from the continue statement to the end of the loop body.

A continue statement has the form:

�� continue ; ��

A continue statement can only appear within the body of an iterative statement.

The continue statement ends the processing of the action part of an iterative (do,
for, or while) statement and moves control to the loop continuation portion of the
statement. For example, if the iterative statement is a for statement, control moves
to the third expression in the condition part of the statement, then to the second
expression (the test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.

Examples of continue Statements

for Statement
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The following example shows a continue statement in a for statement. The
continue statement causes processing to skip over those elements of the array
rates that have values less than or equal to 1.

CCNRAA3
/**
** This example shows a continue statement in a for statement.
**/

#include <stdio.h>
#define SIZE 5

int main(void)
{

int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };

printf("Rates over 1.00\n");
for (i = 0; i < SIZE; i++)
{

if (rates[i] <= 1.00) /* skip rates <= 1.00 */
continue;

printf("rate = %.2f\n", rates[i]);
}

return(0);
}

The program produces the following output:
Rates over 1.00
rate = 1.45
rate = 1.88
rate = 2.00

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop ends.
Processing continues with the third expression of the inner loop. The inner loop
ends when the ’\0’ escape sequence is encountered.

CCNRAA4
/**
** This program counts the characters in strings that are part
** of an array of pointers to characters. The count excludes
** the digits 0 through 9.
**/

#include <stdio.h>
#define SIZE 3

int main(void)
{

static char *strings[SIZE] = { "ab", "c5d", "e5" };
int i;
int letter_count = 0;
char *pointer;
for (i = 0; i < SIZE; i++) /* for each string */

/* for each each character */
for (pointer = strings[i]; *pointer != '\0';
++pointer)
{ /* if a number */

if (*pointer >= '0' && *pointer <= '9')
continue;

letter_count++;

continue Statement
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}
printf("letter count = %d\n", letter_count);

return(0);
}

The program produces the following output:
letter count = 5

v “do Statement” on page 187
v “for Statement” on page 188
v “while Statement” on page 186

return Statement
A return statement ends the processing of the current function and returns control to
the caller of the function.

A return statement has the form:

�� return
expression

; ��

A return statement in a function is optional. The compiler issues a warning if a
return statement is not found in a function declared with a return type. If the end of
a function is reached without encountering a return statement, control is passed to
the caller as if a return statement without an expression were encountered. A
function can contain multiple return statements.

v “Chapter 7. Functions” on page 153

Value of a return Expression and Function Value
If an expression is present on a return statement, the value of the expression is
returned to the caller. If the data type of the expression is different from the function
return type, conversion of the return value takes place as if the value of the
expression were assigned to an object with the same function return type.

If an expression is not present on a return statement, the value of the return
statement is undefined. If an expression is not given on a return statement in a
function declared with a nonvoid return type, an error message is issued, and the
result of calling the function is unpredictable. For example:
int func1()
{

return;
}
int func2()
{

return (4321);
}

int main() {
int a=func1(); // result is unpredictable!
int b=func2();

}

continue Statement
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You cannot use a return statement with an expression when the function is
declared as returning type void.

Examples of return Statements
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */

The following function searches through an array of integers to determine if a match
exists for the variable number. If a match exists, the function match returns the value
of i. If a match does not exist, the function match returns the value -1 (negative
one).
int match(int number, int array[ ], int n)
{

int i;

for (i = 0; i < n; i++)
if (number == array[i])

return (i);
return(-1);

}

goto Statement
A goto statement causes your program to unconditionally transfer control to the
statement associated with the label specified on the goto statement.

A goto statement has the form:

�� goto label_identifier ; ��

Because the goto statement can interfere with the normal sequence of processing,
it makes a program more difficult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the need for a goto statement.

You cannot use a goto statement to jump over initializations.

If an active block is exited using a goto statement, any local variables are
destroyed when control is transferred from that block.

Example of goto Statements

The following example shows a goto statement that is used to jump out of a nested
loop. This function could be written without using a goto statement.

CCNRAA6
/**
** This example shows a goto statement that is used to
** jump out of a nested loop.
**/

#include <stdio.h>
void display(int matrix[3][3]);

int main(void)
{

return Statement
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int matrix[3][3]= {1,2,3,4,5,2,8,9,10};
display(matrix);
return(0);

}

void display(int matrix[3][3])
{

int i, j;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
{

if ( (matrix[i][j] < 1) ¦¦ (matrix[i][j] > 6) )
goto out_of_bounds;

printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);
}

return;
out_of_bounds: printf("number must be 1 through 6\n");

}

v “break Statement” on page 190
v “continue Statement” on page 190
v “Labels” on page 177

Null Statement
The null statement performs no operation. It has the form:

�� ; ��

A null statement can hold the label of a labeled statement or complete the syntax
of an iterative statement.

Examples of Null Statements

The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is only needed to finish
the for syntax; no operations are required.
for (i = 0; i < 3; price[i++] = 0)

;

A null statement can be used when a label is needed before the end of a block
statement. For example:
void func(void) {

if (error_detected)
goto depart;

/* further processing */
depart: ; /* null statement required */

}

goto Statement
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Chapter 9. Preprocessor Directives

The preprocessor is a program that is invoked by the compiler to process code
before compilation. Directives for that program are discussed in this section. After
an overview of preprocessor directives, the topics covered include textual macros,
file inclusion, ISO standard and z/OS predefined macro names, conditional
compilation directives, and pragmas.

v “Preprocessor Overview”
v “z/OS C/C++ Predefined Macro Names” on page 205
v “z/OS Pragma Directives” on page 220

Preprocessor Overview
Preprocessing is a preliminary operation on C and C++ files before they are passed
to the compiler. It allows you to do the following:
v Replace tokens in the current file with specified replacement tokens
v Imbed files within the current file
v Conditionally compile sections of the current file
v Generate diagnostic messages
v Change the line number of the next line of source and change the file name of

the current file
v Apply machine-specific rules to specified sections of code

A token is a series of characters delimited by white space. The only white space
allowed on a preprocessor directive is the space, horizontal tab, vertical tab, form
feed, and comments. The new-line character can also separate preprocessor
tokens.

The preprocessed source program file must be a valid C or C++ program.

The preprocessor is controlled by the following directives:

#define Defines a macro.

#undef Removes a preprocessor macro definition.

#error Defines text for a compile-time error message.

#include Inserts text from another source file.

#if Conditionally suppresses portions of source code, depending on the
result of a constant expression.

#ifdef Conditionally includes source text if a macro name is defined.

#ifndef Conditionally includes source text if a macro name is not defined.

#else Conditionally includes source text if the previous #if, #ifdef,
#ifndef, or #elif test fails.

#elif Conditionally includes source text if the previous #if, #ifdef,
#ifndef, or #elif test fails, depending on the value of a constant
expression.

#endif Ends conditional text.

#line Supplies a line number for compiler messages.
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#pragma Specifies implementation-defined instructions to the compiler.

v “Tokens” on page 11
v “Preprocessor Directive Format”

Preprocessor Directive Format
Preprocessor directives begin with the # token followed by a preprocessor keyword.
The # token must appear as the first character that is not white space on a line.
The # is not part of the directive name and can be separated from the name with
white spaces.

A preprocessor directive ends at the new-line character unless the last character of
the line is the \ (backslash) character. If the \ character appears as the last
character in the preprocessor line, the preprocessor interprets the \ and the
new-line character as a continuation marker. The preprocessor deletes the \ (and
the following new-line character) and splices the physical source lines into
continuous logical lines.

Except for some #pragma directives, preprocessor directives can appear anywhere
in a program.

Macro Definition and Expansion (#define)
A preprocessor define directive directs the preprocessor to replace all subsequent
occurrences of a macro with specified replacement tokens.

A preprocessor #define directive has the form:

�� # define identifier
�

,

( )
identifier

�

identifier
character

��

The #define directive can contain an object-like definition or a function-like
definition.

Object-Like Macros
An object-like macro definition replaces a single identifier with the specified
replacement tokens. The following object-like definition causes the preprocessor to
replace all subsequent instances of the identifier COUNT with the constant 1000 :
#define COUNT 1000

If the statement
int arry[COUNT];

appears after this definition and in the same file as the definition, the preprocessor
would change the statement to
int arry[1000];

in the output of the preprocessor.

Preprocessor Overview
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Other definitions can make reference to the identifier COUNT:
#define MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence of MAX_COUNT with
COUNT + 100, which the preprocessor then replaces with 1000 + 100.

If a number that is partially built by a macro expansion is produced, the
preprocessor does not consider the result to be a single value. For example, the
following will not result in the value 10.2 but in a syntax error.
#define a 10
a.2

Identifiers that are partially built from a macro expansion may not be produced.
Therefore, the following example contains two identifiers and results in a syntax
error:
#define d efg
abcd

Function-Like Macros
Function-like macro definition:

An identifier followed by a parameter list in parenthesis and the
replacement tokens. The parameters are imbedded in the replacement
code. White space cannot separate the identifier (which is the name of the
macro) and the left parenthesis of the parameter list. A comma must
separate each parameter. For portability, you should not have more than 31
parameters for a macro.

Function-like macro invocation:
An identifier followed by a list of arguments in parentheses. A comma must
separate each argument. Once the preprocessor identifies a function-like
macro invocation, argument substitution takes place. A parameter in the
replacement code is replaced by the corresponding argument. Any macro
invocations contained in the argument itself are completely replaced before
the argument replaces its corresponding parameter in the replacement
code.

The following line defines the macro SUM as having two parameters a and b and the
replacement tokens (a + b):
#define SUM(a,b) (a + b)

This definition would cause the preprocessor to change the following statements (if
the statements appear after the previous definition):
c = SUM(x,y);
c = d * SUM(x,y);

In the output of the preprocessor, these statements would appear as:
c = (x + y);
c = d * (x + y);

Use parentheses to ensure correct evaluation of replacement text. For example, the
definition:
#define SQR(c) ((c) * (c))

requires parentheses around each parameter c in the definition in order to correctly
evaluate an expression like:

#define
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y = SQR(a + b);

The preprocessor expands this statement to:
y = ((a + b) * (a + b));

Without parentheses in the definition, the correct order of evaluation is not
preserved, and the preprocessor output is:
y = (a + b * a + b);

Arguments of the # and ## operators are converted before replacement of
parameters in a function-like macro.

The number of arguments in a macro invocation must be the same as the number
of parameters in the corresponding macro definition.

Commas in the macro invocation argument list do not act as argument separators
when they are:
v in character constants
v in string literals
v surrounded by parentheses

Once defined, a preprocessor identifier remains defined and in scope independent
of the scoping rules of the language. The scope of a macro definition begins at the
definition and does not end until a corresponding #undef directive is encountered. If
there is no corresponding #undef directive, the scope of the macro definition lasts
until the end of the compilation unit.

A recursive macro is not fully expanded. For example, the definition
#define x(a,b) x(a+1,b+1) + 4

expands
x(20,10)

to
x(20+1,10+1) + 4

rather than trying to expand the macro x over and over within itself. After the macro
x is expanded, it is a call to function x().

A definition is not required to specify replacement tokens. The following definition
removes all instances of the token debug from subsequent lines in the current file:
#define debug

You can change the definition of a defined identifier or macro with a second
preprocessor #define directive only if the second preprocessor #define directive is
preceded by a preprocessor #undef directive. The #undef directive nullifies the first
definition so that the same identifier can be used in a redefinition.

Within the text of the program, the preprocessor does not scan character constants
or string constants for macro invocations.

Example of #define Directives

The following program contains two macro definitions and a macro invocation that
refers to both of the defined macros:

#define
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CCNRAA8
/**
** This example illustrates #define directives.
**/

#include <stdio.h>

#define SQR(s) ((s) * (s))
#define PRNT(a,b) \

printf("value 1 = %d\n", a); \
printf("value 2 = %d\n", b) ;

int main(void)
{

int x = 2;
int y = 3;

PRNT(SQR(x),y);

return(0);
}

After being interpreted by the preprocessor, this program is replaced by code
equivalent to the following:

CCNRAA9
#include <stdio.h>

int main(void)
{

int x = 2;
int y = 3;

printf("value 1 = %d\n", ( (x) * (x) ) );
printf("value 2 = %d\n", y);

return(0);
}

This program produces the following output:
value 1 = 4
value 2 = 3

v “Scope of Macro Names (#undef)”
v “Operator Precedence and Associativity” on page 95
v “Parenthesized Expressions ( )” on page 101

Scope of Macro Names (#undef)
A preprocessor undef directive causes the preprocessor to end the scope of a
preprocessor definition.

A preprocessor #undef directive has the form:

�� # undef identifier ��

If the identifier is not currently defined as a macro, #undef is ignored.

#define
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Example of #undef Directives

The following directives define BUFFER and SQR:
#define BUFFER 512
#define SQR(x) ((x) * (x))

The following directives nullify these definitions:
#undef BUFFER
#undef SQR

Any occurrences of the identifiers BUFFER and SQR that follow these #undef
directives are not replaced with any replacement tokens. Once the definition of a
macro has been removed by an #undef directive, the identifier can be used in a
new #define directive.

v “Macro Definition and Expansion (#define)” on page 196

# Operator
The # (single number sign) operator converts a parameter of a function-like macro
into a character string literal. For example, if macro ABC is defined using the
following directive:

#define ABC(x) #x

all subsequent invocations of the macro ABC would be expanded into a character
string literal containing the argument passed to ABC. For example:

Invocation Result of Macro Expansion

ABC(1) "1"
ABC(Hello there) "Hello there"

The # operator should not be confused with the null directive.

Use the # operator in a function-like macro definition according to the following
rules:
v A parameter following # operator in a function- like macro is converted into a

character string literal containing the argument passed to the macro.
v White-space characters that appear before or after the argument passed to the

macro are deleted.
v Multiple white-space characters imbedded within the argument passed to the

macro are replaced by a single space character.
v If the argument passed to the macro contains a string literal and if a \

(backslash) character appears within the literal, a second \ character is inserted
before the original \ when the macro is expanded.

v If the argument passed to the macro contains a " (double quotation mark)
character, a \ character is inserted before the " when the macro is expanded.

v The conversion of an argument into a string literal occurs before macro
expansion on that argument.

v If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

v If the result of the macro expansion is not a valid character string literal, the
behavior is undefined.

#undef
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Example of the # Operator

The following examples demonstrate the use of the # operator:
#define STR(x) #x
#define XSTR(x) STR(x)
#define ONE 1

Invocation Result of Macro Expansion

STR(\n "\n" '\n') "\n \"\\n\" '\\n'"
STR(ONE) "ONE"
XSTR(ONE) "1"
XSTR("hello") "\"hello\""

v “Null Directive (#)” on page 219
v “Function-Like Macros” on page 197
v “Macro Definition and Expansion (#define)” on page 196
v “Scope of Macro Names (#undef)” on page 199

Macro Concatenation with the ## Operator
The ## (double number sign) operator concatenates two tokens in a macro
invocation (text and/or arguments) given in a macro definition.

If a macro XY was defined using the following directive:
#define XY(x,y) x##y

the last token of the argument for x is concatenated with the first token of the
argument for y.

Use the ## operator according to the following rules:
v The ## operator cannot be the very first or very last item in the replacement list

of a macro definition.
v The last token of the item in front of the ## operator is concatenated with first

token of the item following the ## operator.
v Concatenation takes place before any macros in arguments are expanded.
v If the result of a concatenation is a valid macro name, it is available for further

replacement even if it appears in a context in which it would not normally be
available.

v If more than one ## operator and/or # operator appears in the replacement list of
a macro definition, the order of evaluation of the operators is not defined.

Examples of the ## Operator

The following examples demonstrate the use of the ## operator:
#define ArgArg(x, y) x##y
#define ArgText(x) x##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text
#define Jitter 1
#define bug 2
#define Jitterbug 3

Invocation Result of Macro Expansion

ArgArg(lady, bug) "ladybug"

# Operator

Chapter 9. Preprocessor Directives 201



Invocation Result of Macro Expansion

ArgText(con) "conTEXT"
TextArg(book) "TEXTbook"
TextText "TEXTtext"
ArgArg(Jitter, bug) 3

v “Macro Definition and Expansion (#define)” on page 196

Preprocessor Error Directive (#error)
A preprocessor error directive causes the preprocessor to generate an error
message and causes the compilation to fail.

The #error directive has the form:

�� # error � character ��

Use the #error directive as a safety check during compilation. For example, if your
program uses preprocessor conditional compilation directives, put #error directives
in the source file to prevent code generation if a section of the program is reached
that should be bypassed.

For example, the directive
#error Error in TESTPGM1 - This section should not be compiled

generates the following error message:
Error in TESTPGM1 - This section should not be compiled

v “Conditional Compilation Directives” on page 213

File Inclusion (#include)
A preprocessor include directive causes the preprocessor to replace the directive
with the contents of the specified file.

A preprocessor #include directive has the form:

�� # include " file_name "
< file_name >
< header_name >
identifiers

��

In the z/OS C and C++ languages, a preprocessor #include directive has a
different syntactical form:

## Operator
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�� # include " file_name "
//

< file_name >
//

��

You can specify a data set or an HFS file for filename. Use double slashes
(//) before the filename to indicate that the file is a data set. Use a single slash (/)
anywhere in the filename to indicate an HFS file.

In all C and C++ implementations, the preprocessor resolves macros contained in
an #include directive. After macro replacement, the resulting token sequence must
consist of a file name enclosed in either double quotation marks or the characters <
and >.

For example:
#define MONTH <july.h>
#include MONTH

If the file name is enclosed in double quotation marks, for example:
#include "payroll.h"

the preprocessor treats it as a user-defined file, and searches for the file in a
manner defined by the preprocessor.

If the file name is enclosed in angle brackets, for example:
#include <stdio.h>

it is treated as a system-defined file, and the preprocessor searches for the file in a
manner defined by the preprocessor.

The new-line and > characters cannot appear in a file name delimited by < and >.
The new-line and " (double quotation marks) character cannot appear in a file
name delimited by " and ", although > can.

Declarations that are used by several files can be placed in one file and included
with #include in each file that uses them. For example, the following file defs.h
contains several definitions and an inclusion of an additional file of declarations:
/* defs.h */
#define TRUE 1
#define FALSE 0
#define BUFFERSIZE 512
#define MAX_ROW 66
#define MAX_COLUMN 80
int hour;
int min;
int sec;
#include "mydefs.h"

You can embed the definitions that appear in defs.h with the following directive:
#include "defs.h"

In the following example, a #define combines several preprocessor macros to
define a macro that represents the name of the C standard I/O header file. A
#include makes the header file available to the program.

#include
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#define C_IO_HEADER <stdio.h>

/* The following is equivalent to:
* #include <stdio.h>
*/

#include C_IO_HEADER

The z/OS implementation has specially defined behavior and compiler
options for include file search paths, which are described in greater detail in z/OS
C/C++ User’s Guide.

ISO Standard Predefined Macro Names
Both C and C++ provide the following predefined macro names as specified in the
ISO C language standard:

Macro Name Description

__DATE__ A character string literal containing the date when the source file
was compiled.

The value of __DATE__ changes as the compiler processes any
include files that are part of your source program. The date is in the
form:

"Mmm dd yyyy"

where:

Mmm Represents the month in an abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than 10, the first d is
a blank character.

yyyy Represents the year.

__FILE__ A character string literal containing the name of the source file.

The value of __FILE__ changes as the compiler processes include
files that are part of your source program. It can be set with the
#line directive.

__LINE__ An integer representing the current source line number.

The value of __LINE__ changes during compilation as the compiler
processes subsequent lines of your source program. It can be set
with the #line directive.

__STDC__ For C, the integer 1 (one) indicates that the C compiler supports the
ISO standard. If you set the language level to anything other than
ANSI, this macro is undefined. (When a macro is undefined, it
behaves as if it had the integer value 0 when used in a #if
statement.)

For C++, this macro is predefined to have the value 0 (zero). This
indicates that the C++ language is not a proper superset of C, and
that the compiler does not conform to ISO C. For more information
on how C++ differ from ISO C, see __STDC__ Macro in
“Appendix A. C and C++ Compatibility on the z/OS Platform” on
page 421.

#include
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__TIME__ A character string literal containing the time when the source file
was compiled.

The value of __TIME__ changes as the compiler processes any
include files that are part of your source program. The time is in the
form:

"hh:mm:ss"

where:

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

__cplusplus For C++ programs, this macro expands to the long integer literal
199711L, indicating that the compiler is a C++ compiler. For C
programs, this macro is not defined. Note that this macro name has
no trailing underscores.

v “Line Control (#line)” on page 218
v “Object-Like Macros” on page 196

z/OS C/C++ Predefined Macro Names
z/OS C/C++ provides the following predefined macros. It defines the value of all
these macros when you use the corresponding #pragma directive or compiler option.

Macro Name Description

__ANSI__ C Only. This macro allows only language constructs that support
the ISO C standard. It is defined as 1 by using the C #pragma
langlvl(ansi) directive or LANGLVL(ANSI) compiler option.

__ARCH__ This macro indicates the group number that was specified to select
the instruction set for a particular machine architecture. The
__ARCH__ macro is predefined to the integer value of the ARCH
suboption. For example, if you specify the ARCH(2) option, the
__ARCH__ macro is predefined to 2.

__BFP__ This macro allows Language Environment headers to map functions
such as sin(x) to appropriate Language Environment calls. z/OS
C/C++ sets this macro to 1 when you specify binary floating point
(BFP) mode by using the FLOAT(IEEE) compiler option.

__BOOL__ C ++ Only. This macro indicates that the compiler accepts the
keyword bool. The macro is predefined to the value of 1. If you
specify NOKEYWORD(BOOL), the macro is not predefined.

_CHAR_SIGNED This macro indicates that the default character type is char signed.
The macro is defined when the #pragma chars(signed) directive is
in effect, or when the CHARS(signed) compiler option is set.

_CHAR_UNSIGNED
This macro indicates that the default character type is char
unsigned. The macro is defined when the #pragma chars(unsigned)
directive is in effect, or when the CHARS(unsigned) compiler option
is set.

__CHARSET_LIB The preprocessor defines the macro __CHARSET_LIB to a value of 0

#include
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when you specify the NOASCII compiler option, and to a value of 1
when you specify the ASCII compiler option.

__CODESET__ A string literal that represents the character code set of the LOCALE
compile option. If you do not use the LOCALE compile option, the
macro is undefined.

__COMMONC__ C Only. Allows language constructs that are defined by XPG. The
__EXTENDED__ macro enables many of the constructs that
__COMMONC__ does. The compiler defines the __COMMONC__ macro as
1 when you use the #pragma langlvl(commonc) directive or the
LANGLVL(COMMONC) compile-time option.

__COMPATMATH__
C ++ Only. This macro indicates whether the LANGLVL(OLDMATH)
compiler option has been specified. The macro is defined and set to
1 if the compiler option has been specified; otherwise, it is
undefined. The OLDMATH suboption of LANGLVL indicates that the
newer C++ function declarations are not to be introduced by the
<math.h> header file.

__COMPILER_VER__
The compiler version. The format of the version number that is
provided by the macro is hex PVRRMMMM, where :

P Represents the compiler product
v 0 for C/370
v 1 for AD/Cycle C/370 and C/C++ for MVS/ESA
v 2 for OS/390 C/C++
v 4 for z/OS C/C++ Release 2 and later

V Represents the version number

RR Represents the release number

MMMM
Represents the modification number

In z/OS C/C++ Version 1 Release 2, the value of the macro is
X'41020000'.

_CPPUNWIND C ++ Only. The macro is set according to the compiler options EXH
and NOEXH, which control whether C++ exception handling is
enabled in the module being built.

__DIGRAPHS__ The preprocessor defines the __DIGRAPHS__ macro to a value of 1
when you specify the DIGRAPH compile option. Otherwise, it is
undefined.

__DLL__ This macro allows you to write conditional code that depends upon
whether or not you have compiled your program as DLL code. For
C++, the preprocessor always defines the macro as 1. For C, the
preprocessor defines the macro as 1 if you specify the DLL compiler
option. Otherwise, it is undefined.

__ENUM_OPT This macro indicates that the compiler supports the ENUMSIZE
option. It is predefined to a value of 1.

_EXT This macro is used in features.h to control the availability of
extensions to the general ISO run-time libraries._EXT is defined to 1
when LANGLVL(LIBEXT) is specified.

__EXTENDED__ This macro is provided for compatibility with compilers prior to z/OS

#include
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V1R2. New program code should check the individual language
feature macros (for example, the _LONG_LONG macro for the long
long data type feature) instead of this macro.

The __EXTENDED__ macro indicates that the compiler supports z/OS
C/C++ language extensions. The compiler predefines the macro if
the #pragma langlvl(extended) directive or the LANGLVL(EXTENDED)
compiler option has been specified. Note that the EXTENDED
suboption represents a group of language feature suboptions.
Program code should check the individual language feature macros
to determine if any of the individual language feature suboptions
has been specified. Please refer to z/OS C/C++ User’s Guide for
details.

The setting of the __EXTENDED__ macro is consistent with previous
compilers only if the EXTENDED option is specified and no other
LANGLVL suboptions is specified.

For example, the long long data type feature is controlled by the
LANGLVL(LONGLONG) suboption. The EXTENDED suboption turns on
the LONGLONG suboption implicitly, together with other language
feature suboptions. Support for the long long data type is indicated
by the _LONG_LONG macro.

__FILETAG__ A string literal that represents the character code set of the filetag
pragma associated with the current file. If no filetag pragma is
present, the macro is undefined.

The value of __FILETAG__ changes as the compiler processes
include files that are part of your source program.

__FUNCTION__ A character string that contains the name of the function that the
z/OS C/C++ is currently compiling.

__GOFF__ Indicates whether the GOFF compiler option was specified. The
macro has the value 1 when the compiler option has been
specified.

__HHW_370__ Indicates that the host hardware is System/370. The preprocessor
predefines this macro to a value of 1 for C and C++ compilers on
System/370.

__HOS_MVS__ Indicates that the host operating system is z/OS. z/OS C/C++
predefines this macro to have a value of 1.

__IBMC__ C Only. This macro indicates the version number of the z/OS C
compiler. The format of the version number that is provided by the
macro is integer PVRRM, where :

P Represents the compiler product
v 0 for C/370
v 1 for AD/Cycle C/370 and C/C++ for MVS/ESA
v 2 for OS/390 C/C++
v 4 for z/OS C/C++ Release 2 and later

V Represents the version number

RR Represents the release number

M Represents the modification number

In z/OS C/C++ Version 1 Release 2, the value of the macro is
41020.

#include
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__IBMCPP__ C ++ Only. This macro indicates the version number of the z/OS
C++ compiler. The format of the version number that is provided by
the macro is integer PVRRM, where :

P Represents the compiler product
v 0 for C/370
v 1 for AD/Cycle C/370 and C/C++ for MVS/ESA
v 2 for OS/390 C/C++ and 4 for z/OS C/C++
v 4 for z/OS C/C++ Release 2 and later

V Represents the version number

RR Represents the release number

M Represents the modification number

In z/OS C/C++ Version 1 Release 2, the value of the macro is
41020.

__IGNERRNO__ The preprocessor defines the macro __IGNERRNO__ to a value of 1
when you specify the IGNERRNO compile option. Otherwise, it is not
defined.

You can use this macro in header files to control the use of a
#pragma linkage .

__INITAUTO__ The preprocessor defines the macro __INITAUTO__ to the
hexadecimal constant (0xnnU), including the parentheses, when
you specify the INITAUTO compile option. Otherwise, it is not
defined.

You can use this macro to control source code for memory
debugging. For example, you can detect values of local variables
that are not explicitly set by your program.

See the description of the __INITAUTO_W__ macro below for
information on how the compiler derives the initial byte and word
value.

__INITAUTO_W__
The preprocessor defines the macro __INITAUTO_W__ to the
hexadecimal constant (0xnnnnnnnnU), including the parentheses,
when you specify the INITAUTO compile option. Otherwise, it is not
defined.

The compiler derives the effective initial byte and word value as
follows. If you specify a byte initializer, nn, then nn is the effective
byte initial value. The effective word initial value is nn repeated 4
times. If you specify a word initializer, nnnnnnnn, the last 2
hexadecimal digits are the effective byte initial value. The effective
word initial value is nnnnnnnn. Note that both the __INITAUTO__ and
the __INITAUTO_W__ macros are on and off at the same time,
depending on whether the INITAUTO option is turned on or off.

_LARGE_FILES This feature test macro is used to enable large file support, which
allows access to hierarchical file system (HFS) files that are larger
than 2 gigabytes. The macro is defined by specifying
DEFINE(_LARGE_FILES), which also sets its value to 1. When an
application is compiled with the LANGLVL(LONGLONG) compiler option
and the macro is turned on, the file I/O-related functions are
activated to operate on HFS files of all sizes by expanding
appropriated offset and file size values to 64–bit values. (Note that

#include
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the LANGLVL(EXTENDED) option turns on LANGLVL(LONGLONG)
implicitly.) For further details on file I/O-related functions, see z/OS
C/C++ Run-Time Library Reference.

__LIBANSI__ This macro is set according to the LIBANSI compiler option, which
means that functions should be processed with function names that
match those in the ISO C library. The compiler can then assume
that the behavior of these functions is that of ISO C functions.

__LIBREL__ This macro is defined as the return value of the librel() library
function call. The compiler calls librel() to determine the
Language Environment library level under which it is running.

__LOCALE__ This macro contains a string literal that represents the locale of the
LOCALE compile option. If you do not supply a LOCALE compile
option, the macro is undefined.

The following example illustrates how to set the run-time locale to
the compile-time locale:
main()
{

setlocale(LC_ALL, __LOCALE__);
. . .

}

_LONG_LONG This macro is defined when the compiler is in a mode that permits
the long long int and signed long long int data types. z/OS
C/C++ supports long long types by default on all language levels
except ANSI. The LONGLONG suboption of the LANGLVL compiler
option also sets this macro regardless of the language level.
(Please refer to the LANGLVL option in the z/OS C/C++ User’s Guide
for support of this language feature.) When long long data type is
available, z/OS C/C++ defines the _LONG_LONG macro to 1.
When the data type is unavailable, the macro is undefined. The
C++ Standard Library and IBM Open Class Libraries provide
additional functionality if long long support is turned on.

__LONGNAME__ For C, the integer 1 indicates that you have specified the LONGNAME
compile option or pragma. Otherwise the macro is undefined. For
C++, the value of __LONGNAME__ is always 1, even if you specify
NOLONGNAME.

In C++, long names are always in the compilation unit. The
LONGNAME compile option in z/OS C++ controls whether non-C++
names will be truncated and uppercased, or left alone. You can use
this option to interface with existing C code that was compiled with
NOLONGNAME, so that the names match.

_MI_ This macro is predefined to 1 when the LANGLVL(LIBEXT) suboption
is specified. When the macro is defined, the machine instruction
built-in functions are available. Please refer to z/OS
C/C++Programming Guide for a list of these functions.

This macro is also predefined by the LANGLVL(SAA), LANGLVL(SAA2),
and LANGLVL(COMMONC) suboptions. Otherwise, it is not predefined.

Note that the LANGLVL(LIBEXT) suboption is turned on implicitly by
the LANGLVL(EXTENDED) suboption, which means that the macro _MI_
is also turned on indirectly by LANGLVL(EXTENDED). Please refer to
z/OS C/C++ User’s Guide for details of the LANGLVL compiler option.

__MVS__ This macro indicates that the host operating system is z/OS. It is

#include
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the same as the macro __HOS_MVS__. For z/OS C/C++ programs,
z/OS C/C++ sets this macro to 1, which indicates that you are
compiling the program on z/OS.

__OBJECT_MODEL_COMPAT__
C ++ Only. This macro indicates that the OBJECTMODEL(COMPAT)
option was specified. When this option is in effect, the macro is set
to 1; otherwise the macro is undefined.

__OBJECT_MODEL_IBM__
C ++ Only. This macro indicates that the OBJECTMODEL(IBM) option
was specified. When this option is in effect, the macro is set to 1;
otherwise the macro is undefined.

__OPTIMIZE__ Indicates whether the OPTIMIZE compiler option was specified. The
value of the macro is set to the level of optimization specified. The
macro always has a predefined value. For example, for the
NOOPTIMIZE or OPTIMIZE(0) compiler options, the macro is
predefined to 0; for the OPTIMIZE(x), the macro is predefined to x,
where x is the value of the specified suboption.

__RTTI_DYNAMIC_CAST__
C ++ Only. Indicates whether the RTTI, RTTI(ALL), or
RTTI(DYNAMICCAST) compiler option was specified. If any of these
options is specified, the macro is defined with its value set to 1. If
NORTTI is specified, the macro is not defined.

__SAA__ C Only. This macro allows only language constructs that support
the most recent level of SAA C standards. It is defined as 1 by
using the #pragma langlvl(saa) directive or LANGLVL(SAA) compiler
option.

__SAA_L2__ C Only. This macro allows only language constructs that conform to
SAA Level 2 C standards. It is defined as 1 by using the #pragma
langlvl(saal2) directive or LANGLVL(SAAL2) compile option.

__STRING_CODE_SET__
This macro allows you to change the code page that the compiler
uses for character string literals (character data enclosed in double
quotation marks). To use this macro, you must specify it with the
DEFINE compiler option. The following example shows you how to
do this:
DEFINE(__STRING_CODE_SET__="ISO8859-1")

This macro affects all source files that are processed within a
compilation unit, including user header files, and system header
files. All string literals within a compilation unit must use the same
code page. Note that you can also use the CONVLIT compiler option
instead of this macro.

The macro does not affect the following types of string literals:
v String literals that are used in #include directives
v String literals that are used in #pragma directives
v String literals that are used to specify linkage, such as extern

"C" (C++ only)

The following restrictions apply to this macro:
v You cannot specify this macro if you have also used predefined

macros (such as __TIMESTAMP__) that return string literals.

#include
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__TARGET_LIB__
The target library version. The format of the version number
provided is hex PVRRMMMM:

P Represents the z/OS C or C/C++ library product
v 0 for C/370
v 1 for Language Environment/370 and Language

Environment for MVS & VM
v 2 for OS/390
v 4 for z/OS Release 2 and later

V Represents the version number

RR Represents the release number

MMMM
Represents the modification number

The value of the __TARGET_LIB__ macro depends on the setting of
the TARGET compiler option. z/OS C/C++ sets __TARGET_LIB__ as
follows:

TARGET Suboption
__TARGET_LIB__ Setting

zOSV1R2 0x41020000

zOSV1R1 0x41010000

OSV2R10 0x220A0000

OSV2R9 0x22090000

OSV2R8 0x22080000

OSV2R7 0x22070000

OSV2R6 0x22060000

0xnnnnnnnn 0xnnnnnnnnn

__TEMPINC__ C++ Only. This macro indicates that the compiler is using the
template-implementation file method of resolving template functions.
It is defined as 1 if you are using the TEMPINC compile option.

__370__ This macro indicates that the program is compiled or targeted to
run on System/370. z/OS C/C++ predefines this macro to a value of
1 for backward compatibility with earlier releases. For current
programs, use __370__.

__THW_370__ This macro indicates that the target hardware is System/370. z/OS
C/C++ predefines this macro to have a value of 1 for z/OS C and
C++ compilers targeting System/370.

__TIMESTAMP__ A character string literal that contains the date and time when the
source file was last modified.

The value of __TIMESTAMP__ changes as the compiler processes
any include files that are part of your source program. The date and
time are in the form:
"Day Mmm dd hh:mm:ss yyyy"

where:

#include
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Day Represents the day of the week (Mon, Tue, Wed, Thu, Fri,
Sat, or Sun).

Mmm Represents the month in an abbreviated form (Jan, Feb,
Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than 10, the first d is
a blank character.

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

yyyy Represents the year.

This macro is available for Partitioned Data Sets (PDSs/PDSEs)
and HFS source files only. For PDSE or PDS members, the ISPF
timestamp for the member is used if present. For PDSE/PDS
members with no ISPF timestamp, sequential datasets, or in stream
source in JCL, z/OS C/C++ returns a dummy timestamp. For HFS
files, z/OS C/C++ uses the system timestamp on an HFS source
file. Otherwise, it returns a dummy timestamp, "Mon Jan 1 0:00:01
1990".

__TOS_MVS__ This macro indicates that the target operating system is z/OS. z/OS
C/C++ predefines this macro to a value of 1.

__TUNE__ This macro specifies the processor for which the code is optimized.
The value of the macro is predefined to the integer value of the
TUNE suboption, which is the group number of a particular machine
architecture. For example, if you specify the TUNE(2) option, the
__TUNE__ macro is predefined to 2.

__XPLINK__ The preprocessor defines the macro__XPLINK__ to a value of 1
when you specify the XPLINK compiler option. Otherwise, it is not
defined.

Examples of z/OS Predefined Macros

CCNX08A
/**
** This example illustrates the __FUNCTION__ predefined macro
** in a C program.
**/
#include <stdio.h>

int foo(int);

int main(int argc, char **argv) {
int k = 1;
printf (" In function %s \n",__FUNCTION__);
foo(k);

}

int foo (int i) {
printf (" In function %s \n",__FUNCTION__);

}

The output of this example is:
In function main
In function foo

#include
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CCNX08B
/**
** This example illustrates the __FUNCTION__ predefined macro
** in a C++ program.
**/
#include <stdio.h>

int foo(int);

int main(int argc, char **argv) {
int k = 1;
printf (" In function %s \n",__FUNCTION__);
foo(k);

}

int foo (int i) {
printf (" In function %s \n",__FUNCTION__);

}

The output of this example is:
In function main(int, char **)
In function foo (int)

CCNX08C
/**
** This example illustrates the __FUNCTION__ predefined macro
** in a C++ program with virtual functions.
**/
#include <stdio.h>
class X { public: virtual void func() = 0;};

class Y : public X {
public: void func() { printf("In function %s \n", __FUNCTION__);}

};

int main() {
Y aaa;
aaa.func();

}

The output of this example is:
In function Y::func()

Conditional Compilation Directives
A preprocessor conditional compilation directive causes the preprocessor to
conditionally suppress the compilation of portions of source code. These directives
test a constant expression or an identifier to determine which tokens the
preprocessor should pass on to the compiler and which tokens should be bypassed
during preprocessing. The directives are:
v #if
v #ifdef
v #else
v #ifndef
v #elif
v #endif

The preprocessor conditional compilation directive spans several lines:
v The condition specification line (beginning with #if, #ifdef, or #ifndef)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to a nonzero value (optional)

#include
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v The #elif line (optional)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to a nonzero value (optional)
v The #else line (optional)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to zero (optional)
v The preprocessor #endif directive

For each #if, #ifdef, and #ifndef directive, there are zero or more #elif directives,
zero or one #else directive, and one matching #endif directive. All the matching
directives are considered to be at the same nesting level.

You can nest conditional compilation directives. In the following directives, the first
#else is matched with the #if directive.
#ifdef MACNAME

/* tokens added if MACNAME is defined */
# if TEST <=10

/* tokens added if MACNAME is defined and TEST <= 10 */
# else

/* tokens added if MACNAME is defined and TEST > 10 */
# endif
#else

/* tokens added if MACNAME is not defined */
#endif

Each directive controls the block immediately following it. A block consists of all the
tokens starting on the line following the directive and ending at the next conditional
compilation directive at the same nesting level.

Each directive is processed in the order in which it is encountered. If an expression
evaluates to zero, the block following the directive is ignored.

When a block following a preprocessor directive is to be ignored, the tokens are
examined only to identify preprocessor directives within that block so that the
conditional nesting level can be determined. All tokens other than the name of the
directive are ignored.

Only the first block whose expression is nonzero is processed. The remaining
blocks at that nesting level are ignored. If none of the blocks at that nesting level
has been processed and there is a #else directive, the block following the #else
directive is processed. If none of the blocks at that nesting level has been
processed and there is no #else directive, the entire nesting level is ignored.

v “#if, #elif” on page 215
v “#ifdef” on page 215
v “#ifndef” on page 216
v “#else” on page 216
v “#endif” on page 217

Conditional Compilation
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#if, #elif
The #if and #elif directives compare the value of constant_expression to zero:

�� # if
elif

constant_expression � token_sequence ��

If the constant expression evaluates to a nonzero value, the lines of code that
immediately follow the condition are passed on to the compiler.

If the expression evaluates to zero and the conditional compilation directive
contains a preprocessor #elif directive, the source text located between the #elif
and the next #elif or preprocessor #else directive is selected by the preprocessor to
be passed on to the compiler. The #elif directive cannot appear after the
preprocessor #else directive.

All macros are expanded, any defined() expressions are processed and all
remaining identifiers are replaced with the token 0.

The constant_expression that is tested must be integer constant expressions with
the following properties:
v No casts are performed.
v Arithmetic is performed using long int values.
v The constant_expression can contain defined macros. No other identifiers can

appear in the expression.
v The constant_expression can contain the unary operator defined. This operator

can be used only with the preprocessor keyword #if or #elif. The following
expressions evaluate to 1 if the identifier is defined in the preprocessor, otherwise
to 0:
defined identifier
defined(identifier)

For example:
#if defined(TEST1) || defined(TEST2)

Note: If a macro is not defined, a value of 0 (zero) is assigned to it. In the following
example, TEST must be a macro identifier:
#if TEST >= 1

printf("i = %d\n", i);
printf("array[i] = %d\n", array[i]);

#elif TEST < 0
printf("array subscript out of bounds \n");

#endif

#ifdef
The #ifdef directive checks for the existence of macro definitions.

If the identifier specified is defined as a macro, the lines of code that immediately
follow the condition are passed on to the compiler.

The preprocessor #ifdef directive has the form:

Conditional Compilation
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�� # ifdef identifier � token_sequence newline_character ��

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the
preprocessor. Otherwise, MAX_LEN is defined to be 50.
#ifdef EXTENDED
# define MAX_LEN 75
#else
# define MAX_LEN 50
#endif

#ifndef
The #ifndef directive checks whether a macro is not defined.

If the identifier specified is not defined as a macro, the lines of code immediately
follow the condition are passed on to the compiler.

The preprocessor #ifndef directive has the form:

�� # ifndef identifier � token_sequence newline_character ��

An identifier must follow the #ifndef keyword. The following example defines
MAX_LEN to be 50 if EXTENDED is not defined for the preprocessor. Otherwise, MAX_LEN
is defined to be 75.
#ifndef EXTENDED
# define MAX_LEN 50
#else
# define MAX_LEN 75
#endif

#else
If the condition specified in the #if, #ifdef, or #ifndef directive evaluates to 0, and
the conditional compilation directive contains a preprocessor #else directive, the
lines of code located between the preprocessor #else directive and the
preprocessor #endif directive is selected by the preprocessor to be passed on to
the compiler.

The preprocessor #else directive has the form:

�� # else � token_sequence newline_character ��

v “#if, #elif” on page 215
v “#ifdef” on page 215
v “#ifndef”

Conditional Compilation
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#endif
The preprocessor #endif directive ends the conditional compilation directive.

It has the form:

�� # endif newline_character ��

Examples of Conditional Compilation Directives
The following example shows how you can nest preprocessor conditional
compilation directives:
#if defined(TARGET1)
# define SIZEOF_INT 16
# ifdef PHASE2
# define MAX_PHASE 2
# else
# define MAX_PHASE 8
# endif
#elif defined(TARGET2)
# define SIZEOF_INT 32
# define MAX_PHASE 16
#else
# define SIZEOF_INT 32
# define MAX_PHASE 32
#endif

The following program contains preprocessor conditional compilation directives:

CCNRABC
/**
** This example contains preprocessor
** conditional compilation directives.
**/

#include <stdio.h>

int main(void)
{

static int array[ ] = { 1, 2, 3, 4, 5 };
int i;

for (i = 0; i <= 4; i++)
{

array[i] *= 2;

#if TEST >= 1
printf("i = %d\n", i);
printf("array[i] = %d\n",
array[i]);

#endif

}
return(0);

}

Conditional Compilation
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Line Control (#line)
A preprocessor line control directive supplies line numbers for compiler messages.
It causes the compiler to view the line number of the next source line as the
specified number.

A preprocessor #line directive has the form:

�� #
line

decimal_constant
" file_name "

characters

��

In order for the compiler to produce meaningful references to line numbers in
preprocessed source, the preprocessor inserts #line directives where necessary (for
example, at the beginning and after the end of included text).

A file name specification enclosed in double quotation marks can follow the line
number. If you specify a file name, the compiler views the next line as part of the
specified file. If you do not specify a file name, the compiler views the next line as
part of the current source file.

For z/OS C and C++compilers, the file_name should be:
v A fully qualified sequential dataset
v A fully qualified PDS or PDSE member
v An HFS path name

The entire string is taken unchanged as the alternate source file name for
the compilation unit (for example, for use by the debugger). Consider if you are
using it to redirect the debugger to source lines from this alternate file. In this case,
you must ensure the file exists as specified and the line number on the #line
directive matches the file contents. The compiler does not check this.

In all C and C++ implementations, the token sequence on a #line directive is
subject to macro replacement. After macro replacement, the resulting character
sequence must consist of a decimal constant, optionally followed by a file name
enclosed in double quotation marks.

Example of the #line Directive

You can use #line control directives to make the compiler provide more meaningful
error messages. The following program uses #line control directives to give each
function an easily recognizable line number:

CCNRABD
/**
** This example illustrates #line directives.
**/

#include <stdio.h>
#define LINE200 200

int main(void)
{

func_1();
func_2();

#line
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}

#line 100
func_1()
{

printf("Func_1 - the current line number is %d\n",_ _LINE_ _);
}

#line LINE200
func_2()
{

printf("Func_2 - the current line number is %d\n",_ _LINE_ _);
}

This program produces the following output:
Func_1 - the current line number is 102
Func_2 - the current line number is 202

Null Directive (#)
The null directive performs no action. It consists of a single # on a line of its own.

The null directive should not be confused with the # operator or the character that
starts a preprocessor directive.

In the following example, if MINVAL is a defined macro name, no action is performed.
If MINVAL is not a defined identifier, it is defined 1.
#ifdef MINVAL

#
#else

#define MINVAL 1
#endif

v “# Operator” on page 200

Pragma Directives (#pragma)
A pragma is an implementation-defined instruction to the compiler. It has the
general form:

�� # pragma � character_sequence ��

where character_sequence is a series of characters giving a specific compiler
instruction and arguments, if any.

The character_sequence on a pragma is not subject to macro substitutions.

More than one pragma construct can be specified on a single #pragma directive.
The compiler ignores unrecognized pragmas.

#line
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z/OS Pragma Directives

This section describes the pragma directives that are specific to the z/OS
platform.

The character_sequence on a pragma is not subject to macro substitutions, unless
otherwise stated.

You can specify more than one pragma construct on a single #pragma directive. The
compiler ignores unrecognized pragmas.

The z/OS C/C++ compiler recognizes the following pragmas:

chars Sets the sign type of character data.

checkout Controls the diagnostic messages that are
generated by the z/OS C compiler CHECKOUT option,
and the z/OS C++ compiler INFO option.

comment Places a comment into the object module. Under
some circumstances it places the comment in the
load module as well. This pragma must appear
before any z/OS C or C++ code.

convlit Provides a means for changing the assumed code
page for character string literals.

csect Identifies the name for either the code, static, or
test control section (CSECT). The IPA Link step
does not use this name; it uses CSECT names that
are specified in the IPA control file.

define C++ Only. This pragma forces the definition of a
template class without actually defining an object of
the class.

disjoint This pragma lists the identifiers that are not aliased
to each other within the scope of their use.

enum This z/OS pragma specifies the amount of storage
occupied by enumerations.

environment C Only. Use z/OS C code as an assembler
substitute.

export Declares that an external function or variable is to
be exported.

filetag Specifies the code set in which the source code
was entered.

hdrstop This pragma is accepted and ignored. It must
appear before any code.

implementation C++ Only. This pragma tells the compiler the name
of the file that contains the function template
definitions. These definitions correspond to the
template declarations in the include file that
contains the pragma.

#pragma
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info C++ Only. This pragma controls the diagnostic
messages that are generated by the INFO compiler
option.

inline C Only. This pragma specifies that a C function is
to be inlined.

isolated_call Lists functions that do not alter data objects visible
at the time of the function call.

langlvl Selects the z/OS C language level for compilation.

leaves Specifies that a named function never returns to the
instruction following the call to that function. The
library function longjmp is an example of such a
function. Note that this pragma directive provides
more freedom to the optimizer. Under the right
conditions, it might aggressively optimize the code
following the call site.

linkage C Only. This pragma identifies the linkage or calling
convention that is used on a function call.

longname Specifies that the compiler is to generate
not-truncated and mixed case names in the object
module that is produced by the compiler. It must
appear before any code.

map Tells the compiler to convert all references to an
identifier to a new name.

margins Specifies the columns in the input line to scan for
input to the compiler.

namemangling C++ Only. Specifies the maximum length for the
external symbol names that are generated from
C++ source code.

noinline Specifies that a z/OS C or C++ function is not to be
inlined.

object_model C++ Only. Specifies the object model to use for the
structures, unions, and classes that follow it.

options C Only. This pragma specifies options to the
compiler in your source program.

option_override Directs the compiler to optimize functions at
different optimization levels than the one specified
on the command line by the OPTIMIZE option. With
this pragma directive, you can leave specified
functions unoptimized, while optimizing the rest of
your application. This eases the debugging effort of
functions that are problematic under optimization,
by allowing you to isolate those functions.

pack Specifies the alignment rules to use for the
structures, unions, and classes that follow it.

page C Only. This pragma skips pages of the generated
source listing.

pagesize C Only. This pragma sets the number of lines per
page for the generated source listing.

#pragma
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priority C++ Only. This pragma specifies the order in which
z/OS C/C++ initializes static objects at run time.

reachable Specifies that you can reach the instruction after a
specified function from a point in the program other
than the return statement in the named function.
The library function, setjmp, is an example of such
a function.

report C++ Only. Allows you to specify the minimum
severity level (type) of report messages that are
displayed or whether specific messages are
enabled or disabled.

runopts Specifies a list of run-time options for z/OS C/C++
to use at execution time.

sequence Defines the section of the input line that is to
contain sequence numbers.

skip C Only. This pragma skips lines of the generated
source listing.

strings Sets storage type for strings.

subtitle C Only. This pragma places text on generated
source listings.

target C Only. This pragma specifies the operating system
or run-time environment for which z/OS C/C++
creates the object module. It must appear before
any z/OS C code.

title C Only. This pragma places text on generated
source listings.

variable Specifies that z/OS C/C++ is to use the named
object in a reentrant or non-reentrant fashion.

wsizeof Specifies the behavior of the sizeof operator either
to that prior to the OS/390 C/C++ Version 1
Release 3 compilers, or to the z/OS C/C++
compiler.

Restrictions on z/OS #pragma Directives

If you have any pragmas that are not common to both C and C++ in code
that will be compiled by both compilers, you may add conditional compilation
directives around the pragmas. This is not strictly necessary since unrecognized
pragmas are ignored.

For example, #pragma object_model is only recognized by the C++ compiler, so you
may decide to add conditional compilation directives around the pragma.
#ifdef __cplusplus
#pragma object_model(pop)
#endif

The following table lists the restrictions on using #pragma directives, and shows
whether a directive is valid in z/OS C, C++, or both. A blank entry in the table
indicates no restrictions.

#pragma
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Table 7. Restrictions on #pragmas

#pragma Restriction on Number of
Occurrences

Restriction on Placement C C++

chars Once. On the first #pragma directive, and before
any code or directive, except for the
pragmas filetag, longname, langlvl or
target, which may precede this directive.

yes yes

checkout yes yes

comment The copyright directive can
appear only once.

The copyright directive must appear
before any z/OS C or C++ code.

yes yes

convlit yes yes

csect Three times. Once for code,
once for static data, and once
for debug information.

yes yes

define Wherever a declaration is allowed. yes

disjoint Wherever a declaration is allowed. yes yes

enum yes yes

environment yes

export Cannot export the main() function. yes yes

filetag Once per file scope. On the first #pragma directive, and before
any code or directive, except for all
conditional compilation directives (such as
#if or #ifdef) which may precede this
directive.

yes yes

implementation Wherever a declaration is allowed. yes

info yes

inline At file scope. yes

isolated_call Wherever a declaration is allowed. yes yes

langlvl Once Before any C code yes

leaves yes yes

linkage Can appear more than once for
each function, as long as one
#pragma does not contradict
another #pragma.

yes

longname Once. On the first #pragma directive, except for
pragmas filetag, chars, langlvl or
target, which may precede this directive.

yes yes

map yes yes

margins yes yes

namemangling yes

noinline At file scope. yes yes

object_model yes

options Before any z/OS C code. yes

option_override yes yes

pack yes yes

page yes

pagesize yes

#pragma
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Table 7. Restrictions on #pragmas (continued)

#pragma Restriction on Number of
Occurrences

Restriction on Placement C C++

priority yes

reachable yes yes

report yes

runopts yes yes

sequence yes yes

skip yes

strings Once. Before any z/OS C or C++ code. yes yes

subtitle yes

target Once. On the first #pragma directive, and before
any code or directive, except for pragmas
filetag, chars, langlvl, or longname,
which may precede this directive.

yes

title yes

variable yes yes

wsizeof yes yes

IPA Considerations

Interprocedural Analysis (IPA), through the IPA compiler option, is a
mechanism for performing optimizations across the compilation units of your z/OS C
or C++ program. IPA also performs optimizations not otherwise available with the
z/OS C/C++compiler.

Many #pragma directives do not have any special behavior under IPA. They have
the same effect on a program compiled with or without the IPA option.

You may see changes during the IPA Link step, due to the effect of a #pragma
directive. The IPA Link step detects and resolves the conflicting effects of #pragma
directives, and the conflicting effects of #pragma directives and compiler options that
you specified for different compilation units. There may also be conflicting effects
between #pragma directives and equivalent compiler options that you specified for
the IPA Link step.

IPA resolves these conflicts similar to the way it resolves conflicting effects of
compiler options that are specified for the IPA Compile step and the IPA Link step.
The Compiler Options Map section of the IPA Link step listing shows the conflicting
effects between compiler options and #pragma directives, along with the resolutions.

For those #pragma directives where there are special considerations for IPA, the
following #pragma descriptions include IPA-related information.

chars

The z/OS #pragma chars directive specifies that the compiler is to treat all
char objects as signed or unsigned.

#pragma
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�� # pragma chars ( unsigned )
signed

��

This pragma must appear on the first #pragma directive. It must also appear before
any code or directive, except for the pragmas filetag, longname, langlvl or target.
These pragmas may precede this directive. Once specified, it applies to the rest of
the file and you cannot turn it off. If a source file contains any functions that you
want to compile without #pragma chars, place these functions in a different file.

The default character type behaves like an unsigned char.

checkout

The z/OS #pragma checkout directive is a z/OS C/C++ directive and an
addition to the SAA Standard.

This pragma can appear anywhere that a preprocessor directive is valid.

�� # pragma checkout ( resume )
suspend

��

With #pragma checkout, you can suspend the diagnostics that the CHECKOUT C
compiler option or the INFO C++ compiler option performs during specific portions of
your program. You can then resume the same level of diagnostics later in the file.

Nested #pragma checkout directives are allowed and behave as the following
example demonstrates:
/* Assume CHECKOUT(PPTRACE) had been specified */
#pragma checkout(suspend) /* No CHECKOUT diagnostics are performed */

...
#pragma checkout(suspend) /* No effect */

...
#pragma checkout(resume) /* No effect */

...
#pragma checkout(resume) /* CHECKOUT(PPTRACE) diagnostics continue */

comment

The z/OS #pragma comment directive places a comment into the object
module. This pragma must appear before any C or C++ code or directive in a
source file. The "token_sequence" field in this pragma has a 1024-byte limit.

�� # pragma comment ( compiler )
date
timestamp

copyright
user , " token_sequence "

��

The comment type can be:

compiler The compiler appends its name and version in an END information
record at the end of the generated object module. z/OS C/C++

#pragma
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does not include the name and version when it generates an
executable, nor does it load the name and version into memory
when it runs the program. This information can be printed out using
the C370LIB utility with the MAP option.

date The compiler appends the date and time of compilation in an END
information record at the end of the generated object module. z/OS
C/C++ does not include the date and time when it generates an
executable nor does it load the date and time into memory when it
runs the program. This information can be printed out using the
C370LIB utility with the MAP option.

timestamp The compiler appends the date and time of the last modification of
the source in an END information record at the end of the
generated object module. z/OS C/C++ does not include the date
and time when it generates an executable nor does it load the date
and time into memory when it runs the program. This information
can be printed out using the C370LIB utility with the MAP option.

If z/OS C/C++ cannot find the timestamp for a source file, the
#pragma comment directive returns Mon Jan 1 0:00:01 1990.

copyright The compiler places text that is specified by the token_sequence, if
any, into the generated object module. When z/OS C/C++ creates
an executable, it includes the token_sequence in the load module.
The module is loaded into memory when z/OS C/C++ runs the
program. In addition to the restriction that the directive be the first
instruction in a source file, the copyright directive can appear only
once in a compilation unit, whereas the other types of comment
directives can appear more than once.

user The compiler places the text that is specified by the
token_sequence, if any, into the generated object module. When
z/OS C/C++ creates an executable, the token_sequence is included
in the load module. Note that z/OS C/C++ does not necessarily
load it into memory when it runs the program. z/OS C/C++ places
the token_sequence on END records in columns 34 to 71.

The characters in the token_sequence field, if specified, must be enclosed in double
quotation marks (").

You can display the object-file comments by using the MAP option for the C370LIB
utility.

IPA Considerations for the #pragma comment
The #pragma comment directive affects the IPA Compile step only if the OBJECT
suboption of the IPA compile option is in effect. With the IPA(OBJONLY) option, the
pragma has the same effect as if IPA were not specified.

During the partitioning process in the IPA Link step, the compiler places the text
string information #pragma comment at the beginning of partition 0. Partition 0 is the
initialization partition.

convlit

The z/OS #pragma convlit directive allows you to suspend the string literal
conversion that the convlit compiler option performs during specific portions of
your program. You can then resume the conversion at some later point in the file.

#pragma
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�� # pragma convlit ( resume )
suspend

��

The pragma is effective only when you specify the CONVLIT compile option.

If you select the PPONLY option, z/OS C/C++ echoes the convlit pragma to the
expanded source file.

You can nest #pragma convlit directives. They behave as the following example
demonstrates:
/* Assume CONVLIT (<codepage>) had been specified */
#pragma convlit(suspend) /* No string literal conversion */

...
#pragma convlit(suspend) /* No effect */

...
#pragma convlit(resume) /* No effect */

...
#pragma convlit(resume) /* String literal conversion continues */

Macros, user-defined and pre-defined, are replaced before tokenization; therefore,
using #pragma convlit(suspend) and #pragma convlit(resume) around a macro
definition would have no effect.

For example:
/* No effect on macro definition when using #pragma convlit(suspend)

and #pragma convlit(resume)*/

main() {
#pragma convlit (suspend)

#define str "Hello World!"
puts(str); /* macro str is not converted */

#pragma convlit(resume)

puts(str); /* macro str is converted */
}

csect

The z/OS #pragma csect directive identifies the name for either the code,
static, or debug control section (CSECT).

�� # pragma csect ( CODE , " name " )
STATIC
TEST

��

It is a z/OS C/C++ specific pragma, and an addition to the SAA Standard.

code Specifies the CSECT that contains the executable code (C functions) and
constant data.

static Designates the CSECT that contains all program variables with the static
storage class and all character strings.

test Designates the CSECT that contains debug information. You must specify
the TEST option.

#pragma
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The above syntax encloses the name in double quotation marks. This is the name
that is used for the applicable CSECT (code, static, or test). z/OS C/C++ does not
map the name in any way, including uppercasing. If the name is greater than 8
characters, you must turn on the LONGNAME option and use the binder. The name
must not conflict with the name of an exposed name (external function or object) in
a source file. In addition, it must not conflict with another #pragma csect directive or
#pragma map directive. For example, the name of the code CSECT must differ from
the name of the static and test CSECTs.

At most, three #pragma csect directives can appear in a source program as follows:
v One for the code CSECT
v One for the static CSECT
v One for the debug CSECT

Consider the case in which there is no #pragma csect directive in the source file
and you specify the CSECT compiler option. In this case, z/OS C/C++ automatically
generates CSECT names from the source file name. For examples that show the
file names that are generated when using either the #pragma csect or the CSECT
compiler option, see the section that describes the CSECT option in the z/OS C/C++
User’s Guide.

When both #pragma csect and the CSECT compiler option are specified, the compiler
first uses the option to generate the csect names, and then the #pragma csect
overrides the names generated by the option. Suppose that you compile the
following code with the option CSECT(abc) and program name foo.c.
#pragma csect (STATIC, "blah")
int main ()
{

return 0;
}

First, the compiler generates the following csect names:
STATIC: abc#foo#S
CODE: abc#foo#C
TEST: abc#foo#T

Then the #pragma csect overrides the static CSECT name, which renders the final
CSECT name to be:
STATIC: blah
CODE: abc#foo#C
TEST: abc#foo#T

Private code has a disadvantage. When new code is linked to an executable that
contains old code, the new code replaces the old. The old code, however, is not
discarded from the executable. The size of the executable will grow, and you may
get duplicates of functions. Naming the CSECTs with this directive replaces the old
code with the new, and removes the old code from the executable. If you want
replacement and removal, name the code, static, and test CSECT.

IPA Considerations for the #pragma csect
Use the #pragma csect directive when naming regular objects only if the OBJECT
suboption of the IPA compiler option is in effect. Otherwise, the compiler discards
the CSECT names that #pragma csect generated. With the IPA(OBJONLY) option,
the pragma has the same effect as if the IPA option were not specified.

#pragma
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define (z/OS C++ Only)

The z/OS #pragma define directive forces the definition of a template class
without actually defining an object of the class.

�� # pragma define ( template_class_name ) ��

The pragma can appear anywhere that a declaration is allowed. Use the pragma to
organize your program to efficiently or automatically generate template functions.

disjoint

The z/OS #pragma disjoint directive lists the identifiers that are not aliased
to each other within the scope of their use. In the following syntax diagram,
identifier is the name of a variable:

�� #pragma disjoint �

� �

� �

( identifier , identifier )

* *

��

The directive informs the compiler that none of the identifiers listed shares the same
physical storage, which provides more opportunity for optimizations. If any
identifiers actually share physical storage, the pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is
allowed. An identifier in the directive must be visible at the point in the program
where the pragma appears. The identifiers in the disjoint name list cannot refer to
any of the following:
v A member of a class, structure, or union
v A structure, union, or enumeration tag
v An enumeration constant
v A typedef name
v A label

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function argument
before it appears in the directive.

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */
one_function()
{

b = 6;

#pragma
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*ptr_a = 7; /* Assignment will not change the value of b */

another_function(b); /* Argument "b" has the value 6 */
}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable from
memory.

enum

The z/OS #pragma enum directive specifies the amount of storage occupied
by enumerations. The directive is in effect until the next valid #pragma enum directive
is encountered. The syntax of the option is as follows:

�� # pragma enum ( reset )
pop
small
int
1
2
4

��

A #pragma enum(reset) or #pragma enum(pop) resets the enum setting to the one
that was in effect before the current setting. If no previous enum setting was
specified in the file, the one specified with the ENUM compiler option is used. For
every #pragma enum directive in your program, it is good practice to have a
corresponding #pragma enum(reset) or #pragma enum(pop) as well. This is the only
way to prevent one file from potentially changing the enum setting of another file
that is included.

The default is #pragma enum(small). It allocates to an enum variable the amount of
storage that is required by the smallest predefined type that can represent that
range of enum constants. The other suboptions allocate a specific amount. If the
specified storage size is smaller than that required by the range of enum constants,
the C compiler issues an error. For C++, a suboption that can represent the range
will be used, and a warning is issued.

For example:
#pragma enum(1)
enum e_tag {

a=0,
b=SHRT_MAX /* error CBC3387 */

} e_var;
#pragma enum(reset)

For C++, a warning message is issued, and a suboption that can represent the
range of enum constants will be used.

The following table summarizes the #pragma enum suboptions:

reset Sets the enum setting to that which was in effect before the current
setting.

#pragma
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pop Restores the enum setting to that which was in effect immediately
before the current setting.

small Specifies that an enumeration occupies a minimum amount of
storage: either 1, 2, or 4 bytes of storage, depending on the range
of the enum constants.

int Specifies that an enumeration occupies 4 bytes of storage and are
represented by int.

1 Specifies that an enumeration occupies 1 byte of storage.

2 Specifies that an enumeration occupies 2 bytes of storage.

4 Specifies that an enumeration occupies 4 bytes of storage.

You cannot have #pragma enum directives within the declaration of an enum. The
following code segment generates a warning message and the second occurrence
of the enum option is ignored:
#pragma enum(small)
enum e_tag {

a,
b,

#pragma enum(int) /*cannot be within a declaration */
c

} e_var;

The following table illustrates the preferred sign and type for each range of enum
constants:

Table 8. ENUM Constants for C and C++

ENUM Constants small 1 2 4 int

0..127 unsigned char signed char short int int

-128..127 signed char signed char short int int

0..255 unsigned char unsigned char short int int

0..32767 unsigned short ERROR short int int

-32768..32767 short ERROR short int int

0..65535 unsigned short ERROR unsigned short int int

0..2147483647 unsigned int ERROR ERROR int int

-(2147483647+1)..2147483647 int ERROR ERROR int int

0..4294967295 unsigned int ERROR ERROR unsigned int unsigned int

environment (z/OS C Only)

The z/OS #pragma environment directive is specific to z/OS C and an
addition to the SAA Standard.

�� # pragma environment ( function )
,nolib

��

With the #pragma environment directive, you can use z/OS C code as an assembler
substitute. The directive allows you to do the following:
v Specify entry points other than main
v Omit setting up a C environment on entry to this function

#pragma
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v Specify several system exits that are written in z/OS C code in the same
executable

If you specify nolib, the environment is established, and the library is not loaded at
run time. If you do not specify anything, the library is loaded.

Note: If you specify any other value than nolib after the function name, behavior is
not defined.

export

The z/OS #pragma export directive declares that a function or variable is to
be exported. It also specifies the name of the function or variable to be referenced
outside the module. You can use this #pragma to export functions or variables from
a DLL module.

�� # pragma export ( function )
variable

��

#pragma export is specific to z/OS C/C++ and an addition to the SAA standard.

With the #pragma export directive, you can export specific functions and variables to
the users of your DLL.

You can specify this pragma anywhere in the DLL source code, on its own line, or
with other pragmas. You can also specify it before or after the definition of the
variable or function. You must externally define the exported function or variable.

If the specification for a const variable in a #pragma export directive conflicts with
the ROCONST option, the pragma directive takes precedence over the compile option,
and the compiler issues an informational message. The const variable gets
exported and it is considered re-entrant.

Note: You cannot export the main() function. You can also use the _Export
keyword to export a function.

IPA Considerations for the #pragma export
If you specify this #pragma in your source code in the IPA Compile step, you cannot
override the effects of this #pragma on the IPA Link step.

filetag

The z/OS #pragma filetag directive specifies the code set in which the
source code was entered.

�� # pragma filetag ( "code set name" ) ��

Since the # character is variant between code sets, use the trigraph representation
??= instead of # as illustrated below.

The #pragma filetag directive must appear at most once per source file. It must
appear before the first statement or directive, except for all conditional compilation
directives, which may precede this directive. For example:

#pragma
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??=ifdef COMPILER_VER /* This is allowed. */
??=pragma filetag ("code set")

??=endif

It should not appear in combination with any other #pragma directives. For example,
the directive is incorrect:

??=pragma filetag ("IBM-1047") export (baffle_1)

If there are comments before the pragma, z/OS C/C++ does not translate them to
the code page that is associated with the LOCALE option.

implementation (z/OS C++ Only)

The z/OS #pragma implementation directive tells the compiler the name of
the file containing the function-template definitions. These definitions correspond to
the template declarations in the include file which contains the pragma.

�� # pragma implementation ( string_literal ) ��

This pragma can appear anywhere that a declaration is allowed. Use this pragma to
organize your program to efficiently or automatically generate template functions.

#pragma implementation is only effective if the TEMPINC option is in effect. When the
TEMPLATEREGISTRY option is specified, #pragma implementation has no meaning and
is ignored. Note that the TEMPINC and TEMPLATEREGISTRY options are mutually
exclusive.

If the NOTEMPINC option is in effect, you must test the value of the __TEMPINC__
macro, and conditionally include the required source.

info (z/OS C++ Only)

The z/OS #pragma info directive controls the diagnostic messages that are
generated by the INFO compiler option.

�� # pragma info ( suspend )
resume

��

You can use this pragma directive in place of the INFO option.

Use #pragma info suspend to suspend the diagnostics that the INFO compiler option
performs during specific portions of your program. You can then use #pragma info
resume to resume the same level of diagnostics later in the file.

You can also use #pragma checkout to suspend or resume diagnostics.

#pragma
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inline (z/OS C Only)

The z/OS #pragma inline directive specifies whether or not the function is
to be inlined. The pragma can be anywhere in the source, but must be at file scope.
#pragma inline has no effect if you have not specified the INLINE or the OPT
compiler option.

�� # pragma inline ( function )
noinline

��

The #pragma inline directive is specific to z/OS C and is an addition to the SAA
Standard.

The #pragma noinline directive is specific to z/OS C and C++, and is an addition to
the SAA Standard.

If you specify #pragma inline, the function is inlined on every call. The function is
inlined in both selective (NOAUTO) and automatic (AUTO) mode. For z/OS C++, you
can inline functions using the inline keyword.

If you specify #pragma noinline in your C or C++ program, the function is never
inlined when you call it. This pragma has no effect when you specify NOAUTO with
the z/OS C/C++ INLINE compiler option.

The default when compiling with the OPTIMIZE option is to inline functions even if
the z/OS C++ inline keyword has not been specified. The default when compiling
with the NOOPTIMIZE option is to only inline C++ functions that are:
v Implicitly inlined; that is when the code for a member function is included inside a

class definition
v Explicitly inlined; that is when the inline keyword is used when declaring a

function

For C, you can place the #pragma inline and noinline directives anywhere in the
source. They must be at file scope.

The #pragma noinline directive is the only way to turn off inlining of functions that
have been implicitly or explicitly inlined. It also takes precedence over the z/OS C++
inline keyword.

IPA Considerations for the #pragma inline
The compiler uses the IPA Link control file directive in the following cases:

v If you specify both the #pragma noinline directive and the IPA Link control file
inline directive for a function

v If you specify both the #pragma inline directive and the IPA Link control file
noinline directive for a function

Example
CCNRABE
/* this example shows how #pragma inline may be used */

#pragma csect(code,"MYCFILE")
#pragma csect(static,"MYSFILE")
#pragma options(INLINE)

#include <stdio.h>

#pragma
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#include <stdlib.h>

static int (writerecord) (int, char *);

#pragma inline (writerecord)

int main()
{

int chardigit;
int digit;

printf("Enter a digit\n");
chardigit = getchar();

digit = chardigit - '0';

if (digit < 0 || digit > 9)
{
printf("The digit you entered is not between 1 and 8\n");
exit(99);
}

switch(digit)
{
case 0:

writerecord(0, "entered 0");
break;

case 1:
writerecord(1, "entered 1");
break;

default:
writerecord(9, "entered other");

}
}

static int writerecord (int digit, char *phrase)
{

switch (digit)
{
case 0:

printf("writerecord 0: ");
printf("%s\n", phrase);
break;

case 1:
printf("writerecord 1: ");
printf("%s\n", phrase);
break;

case 2:
printf("writerecord 2: ");
printf("%s\n", phrase);
break;

case 3:
printf("writerecord 3: ");
printf("%s\n", phrase);
break;

default:
printf("writerecord X: ");
printf("%s\n", phrase);

}

return 0;
}

#pragma
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isolated_call

The z/OS #pragma isolated_call directive lists functions that do not alter
data objects visible at the time of the function call. In the following syntax diagram,
identifier is a primary expression that can be an identifier, operator function,
conversion function, or qualified name:

�� # pragma isolated_call �

,

( identifier ) ��

The pragma must appear before calls to the functions in the identifier list. You must
declare the identifiers that are listed before using them in the pragma. They must
be of type function, or a typedef of function. If a name refers to an overloaded
function, all variants of that function declared before the pragma are marked as
isolated calls.

The pragma informs the compiler that none of the functions listed has side effects.
For example:
v Accessing a volatile object
v Modifying an external object
v Modifying a file

Otherwise, you can consider calling a function that does any of the above to be
side effects.

Consider any change in the state of the run-time environment a side effect. Passing
function arguments by reference is one side effect that z/OS C/C++ allows. In
general, however, functions with side effects can give incorrect results when listed
in #pragma isolated_call directives.

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function. It also indicates that references
to storage can be deleted from the calling function where appropriate. Do not
specify a function that calls itself or relies on local static storage. Listing such
functions in the #pragma isolated_call directive can give unpredictable results.

When a function is marked as isolated, the compiler can make more optimistic
assumptions about what variables the function modifies. The compiler may move
function calls to functions that are flagged as isolated to a different location in the
code or even remove them entirely.

The following example routines shows you when to use the #pragma isolated_call
directive (routine addmult). It also shows you when not to use it (routines same and
check):
#include <stdio.h>
#include <math.h>

int addmult(int op1, int op2);
#pragma isolated_call(addmult)

/* This routine is a good candidate to be flagged as isolated as its */
/* result is constant with constant input and it has no side effects. */
int addmult(int op1, int op2) {

int rslt;

#pragma
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rslt = op1*op2 + op2;
return rslt;

}

/* The routine 'same' should not be flagged as isolated as its state */
/* (the static variable delta) can change when it is called. */
int same(double op1, double op2) {

static double delta = 1.0;
double temp;

temp = (op1-op2)/op1;
if (fabs(temp) < delta)

return 1;
else {

delta = delta / 2;
return 0;

}
}

/* The routine 'check' should not be flagged as isolated as it has a */
/* side effect of possibly emitting output. */
int check(int op1, int op2) {

if (op1 < op2)
return -1;

if (op1 > op2)
return 1;

printf("Operands are the same.\n");
return 0;

}

IPA Considerations for the #pragma isolated_call
If you specify this #pragma in your source code in the IPA Compile step, you cannot
override the effects of this #pragma on the IPA Link step.

langlvl
The z/OS #pragma langlvl directive selects the C language level for

compilation.

�� # pragma langlvl ( ansi )
commonc
extended
saa
saal2

��

You can only specify this pragma only once in a source file. It must appear before
any statements in a source file. The compiler uses predefined macros in the header
files to make declarations and definitions available that define the specified
language level. When both the pragma and the compiler option are specified, the
compiler option takes precedence over the pragma.

The default language level is EXTENDED.

ansi Defines the predefined macros __ANSI__ and __STDC__ and
undefines other langlvl variables. It allows only language
constructs that support the ISO C standards.

extended Defines the predefined macro __EXTENDED__ and undefines other
langlvl variables. The default language level is EXTENDED. z/OS C
defines the __EXTENDED__ macro as 1. Note that #pragma

#pragma
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langlvl(EXTENDED) has no effect in the z/OS UNIX environment. In
z/OS UNIX, you must use the compile option LANGLVL(EXTENDED)
instead of the pragma.

commonc Defines the predefined macro __COMMONC__ and __EXTENDED__ and
undefines other langlvl variables. This language level allows
compilation of code that contains constructs defined by the X/Open
Portability Guide (XPG) Issue 3 C language (referred to as
Common Usage C). It is roughly equivalent to what is commonly
known as K&R C.

saa Defines the predefined macro __SAA__ and undefines other langlvl
variables.

saal2 Defines the predefined macro __SAA_L2__ and undefines other
langlvl variables.

The #pragma langlvl(extended) permits packed decimal types and it issues a
warning message when it detects assignment between integral types and pointer
types.

The #pragma langlvl(ansi) does not permit packed decimal types and issues an
error message when it detects assignment between integral types and pointer
types.

The LANGLVL compiler option has the same effect as this pragma.

leaves

The z/OS #pragma leaves directive takes a function name, and specifies
that the function never returns to the instruction following a call to that function.

�� # pragma leaves �

,

( function_name ) ��

When enabled, the leaves pragma provides information to the compiler that enables
it to explore additional opportunities for optimization. Also see “reachable” on
page 252.

When you specify the LIBANSI compiler option, you tell the compiler that ANSI C
library function names refer to ANSI C library functions. These function names do
not refer to your own version of the library functions, which may have different
semantics. In this case, the compiler checks whether the longjmp family of functions
(longjmp, _longjmp, siglongjmp, and _siglongjmp) contain #pragma leaves. If the
functions do not contain this pragma directive, the compiler will insert this directive
for that function. This is not shown in the listing.

IPA Considerations for the #pragma leaves
If you specify the #pragma leaves directive in your source code in the IPA compile
step, you cannot override the effects of this directive in the IPA link step.

Effect on IPA Link Step
The leave (and reachable) status set by the IPA compile step remains in effect and
cannot be unset by option settings during the IPA Link Step. (For more information,
refer to “reachable” on page 252 as well.)

#pragma
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linkage (z/OS C only)

The z/OS #pragma linkage directive identifies the entry point of modules
that are used in interlanguage calls.

�� # pragma linkage ( identifier, OS )
FETCHABLE
PLI
COBOL
FORTRAN

, RETURNCODE
OS_DOWNSTACK
OS_UPSTACK
OS_NOSTACK
OS31_NOSTACK
REFERENCE

��

The identifier either identifies the name of the function that is to be the entry point
of the module. Or, it identifies a typedef that will be used to define the entry point.

In z/OS C++, you accomplish this by using extern "linkage-type" when declaring
an identifier, for example,
extern "FORTRAN" void f();

extern "COBOL" void g();

The #pragma linkage directive also designates other entry points within a program
that you can use in a fetch operation.

The following are the linkage entry points:

FETCHABLE Specifies a name, other than main, as an entry point within the
program. This pragma also indicates that this name (identifier in the
syntax diagram) can be used in a fetch() operation.

OS Designates an entry point (identifier in the syntax diagram) as an OS
linkage entry point. OS linkage is the basic linkage convention that is
used by the operating system. If the caller is compiled with
NOXPLINK, on entry to the called routine it registers 13 points to a
standard Language Environment stack frame, beginning with a
72-byte save area (which is compatible with Language Environment
languages that expect by-reference calling conventions and with the
Language Environment–supplied Assembler prologue macro). If the
caller is compiled with XPLINK, the behavior depends on the
OSCALL suboption of the XPLINK compiler option. This suboption
selects the behavior for linkage OS from among OS_DOWNSTACK,
OS_UPSTACK, and OS_NOSTACK (the default). This means that
applications, which use linkage OS to communicate among C or
C++ functions, will need source changes when recompiled with
XPLINK. See the description that follows for REFERENCE.

PLI Designates an entry point (identifier in the syntax diagram) as a
PL/I linkage entry point.

COBOL Designates an entry point (identifier in the syntax diagram) as a
COBOL linkage entry point.

#pragma

Chapter 9. Preprocessor Directives 239



FORTRAN Designates an entry point (identifier in the syntax diagram) as a
FORTRAN linkage entry point.

You can specify the RETURNCODE keyword with the FORTRAN keyword
for C programs only. z/OS C/C++ does not support it for C++.
RETURNCODE indicates to the compiler that the routine named by
identifier is a FORTRAN routine, which returns an alternate return
code. It also indicates that the routine is defined outside the
compilation unit. You can retrieve the return code by using the
fortrc() function. If the compiler finds the function definition inside
the compilation unit, it issues an error message. Note that you can
define functions outside the compilation unit, even if you do not
specify the RETURNCODE keyword.

OS_DOWNSTACK Designates an entry point (identifier in the syntax diagram) as an
OS linkage entry point in XPLINK mode with a downward growing
stack frame.

If the function identified by identifier is defined within the
compilation unit and is compiled using the NOXPLINK option, the
compiler issues an error message.

OS_UPSTACK Designates an entry point (identifier in the syntax diagram) as an
OS linkage entry point in XPLINK mode with a traditional upward
growing stack frame.

This linkage is required for a new XPLINK downward-stack routine to
be able to call a traditional upward-stack OS routine. This linkage
explicitly invokes compatibility code to swap the stack between the
calling and the called routines.

If the function identified by identifier is defined within the
compilation unit and is compiled using the XPLINK option, the
compiler issues an error message. Typically, the identifier will not be
defined in a compilation. This is acceptable. In this case, it is a
reference to an external procedure that is separately compiler with
NOXPLINK.

OS_NOSTACK Designates an entry point (identifier in the syntax diagram) as an
OS linkage entry point in XPLINK mode with no preallocated stack
frame. An argument list is constructed containing the addresses of
the actual arguments. The last item in this list has its high order bit
set. Register 1 is set to point to this argument list. Register 13
points to a 72-byte save area that may not be followed by z/OS
Language Environment control structures, such as the NAB.
Register 14 contains the return address. Register 15 contains the
entry point of the called function. This is synonymous with
OS31_NOSTACK.

OS31_NOSTACK Designates an entry point (identifier in the syntax diagram) as an
OS linkage entry point in XPLINK mode with no preallocated stack
frame.

REFERENCE This is synonymous with OS_UPSTACK in non-XPLINK mode and
synonymous with OS_DOWNSTACK in XPLINK mode. Unlike the
linkage OS, this is not affected by the OSCALL suboption of XPLINK.
Consider using this OS instead to make the source code portable
between XPLINK and non-XPLINK.
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You can use a typedef in a #pragma linkage directive to associate a specific linkage
convention with the typedef of a function.
typedef void func_t(void);
#pragma linkage (func_t,OS)

In the example, the #pragma linkage directive associates the OS linkage convention
with the typedef func_t. This typedef can be used in C declarations wherever a
function type specifies the type function of OS linkage type.

longname

The z/OS #pragma longname directive specifies that the compiler is to
generate not-truncated and mixed case names in the object module that is
produced by the compiler. These names can be up to 1024 characters in length.

�� # pragma longname
nolongname

��

If you use the #pragma longname directive for z/OS C and C++ programs, you must
either use the binder to produce a program object in a PDSE, or you must use the
prelinker. The binder, IPA Link step, and prelinker support the long name directory
that is generated by the Object Library utility for autocall.

If you specify the NOLONGNAME compile option, the compiler ignores the #pragma
longname directive. If you specify the LONGNAME compile option, the compiler ignores
the #pragma nolongname.

Note: The z/OS C compiler defaults to the NOLONGNAME compile option, and the
z/OS C++ compiler defaults to the LONGNAME compile option.

Under z/OS C, if you specify the ALIAS compile option, the compiler creates a NAME
control statement, but no ALIAS control statements. You can use the z/OS Object
Library Utility to create a library of object modules with a long name directory which
supports autocall of long name symbols.

If you have more than one preprocessor directive, #pragma longname may be
preceded only by #pragma filetag, #pragma chars, #pragma langlvl, and #pragma
target. Some directives, such as #pragma variable and #pragma linkage are
sensitive to the name handling.

For z/OS C++, you must specify #pragma longname and #pragma nolongname before
any code. Otherwise, the compiler issues a warning message.

If you use #pragma map to associate an external name with an identifier, the external
name is produced in the object module. That is, #pragma map has the same
behavior with or without the #pragma longname directive.

The #pragma nolongname directive directs the compiler to generate truncated and
uppercase names in the object module produced by the compiler. When the
#pragma nolongname directive is specified, only functions that do not have C++
linkage are given truncated and uppercase names. More details on external name
mapping are provided in the section, “map” on page 242. Also, if you have more
than one preprocessor directive, #pragma nolongname must be the first one.
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If you specify either #pragma nolongname or the NOLONGNAME option, and this results
in mapping of two different source code names to the same object code name, the
compiler will not issue an error message.

IPA Considerations for the #pragma longname
You must specify either the LONGNAME compile option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you are using the c89 or cc
utility from z/OS UNIX, both of which already specify the LONGNAME compiler option).
Otherwise, you receive an unrecoverable compiler error.

map

The z/OS #pragma map directive tells the compiler to convert all references
to an identifier to ″name″.

#pragma map is a z/OS C/C++ directive and an addition to SAA standard. If you use
the #pragma map directive, the C/C++ name in the source file is not visible in the
object deck. The map name represents the object in the object deck.

#pragma map for z/OS C
For z/OS C, #pragma map has the form:

�� # pragma map ( identifier , ″name″ ) ��

identifier A name of a data object or function with external linkage.

name The external name that the compiler binds to the given object or
function. If the name is longer than 8 characters, you must use the
binder and specify the LONGNAME compile option.

The directive can appear anywhere within a single compilation unit. It can appear
before any declaration or definition of the named object or function.

You should enclose name in double quotation marks. The maximum length for
external names is eight characters, unless the LONGNAME compile option is specified.
The compiler keeps it as specified on the #pragma map directive in mixed case. It
must not conflict with the name in another #pragma map or #pragma csect directive.

The map name is an external name, thus you must not use it in the source file to
reference the object. If you use the map name in the source file to access the
corresponding object, the compiler treats it as a new identifier.

The compiler produces an error message if you give more than one map name to
an identifier. Two different identifiers can have the same map name.

The compiler resolves the identifiers appearing in the directive, including any type
names used in the prototype argument list. The compiler resolves them as though
the directive had appeared at file scope, independent of its actual point of
occurrence.

For example:
extern "C" int func(int);
#pragma map(func, "funcnam1") // maps ::func
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#pragma map for z/OS C++
For z/OS C++, #pragma map has the form:

�� # pragma map �

� ( identifier , ″name″ )
func_or_op_identifier ( argument_list )

��

identifier A name of a data object or a nonoverloaded
function with external linkage.

func_or_op_identifier A name of a function or operator with external
linkage. The name can be qualified.

argument_list A prototype list for the named function or operator.

name The external name that is bound to the given
object, function, or operator. If the name is longer
than 8 characters you must use the binder.

The directive can appear anywhere within a single compilation unit. It can appear
before any declaration or definition of the named object, function, or operator. The
compiler resolves the identifiers appearing in the directive, including any type
names used in the prototype argument list. It resolves them as though the directive
had appeared at file scope, independent of its actual point of occurrence.

Note: The map name is not affected by the CONVLIT or the ASCII compiler options.

For example:
int func(int);

class X
{
public:

void func(void);
#pragma map(func, "funcname1") // maps ::func
#pragma map(X::func, "funcname2") // maps
X::func
};

In z/OS C++, you should not use #pragma map to map the following:
v z/OS C++Member functions
v Overloaded functions
v Objects generated from templates
v Functions with z/OS C++ linkage, or linkage

Such mappings override the compiler-generated names, which could cause IPA Link
or binder errors.

IPA Considerations for the #pragma map
The use of the #pragma map directive for variables will inhibit the global coalescing
optimization of these variables during the IPA Link step.

margins

The z/OS #pragma margins directive specifies the margins in the source file
that are to be scanned for input to the compiler. You cannot specify columns (m,n)
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for z/OS C++. The #pragma nomargins directive specifies that the entire input source
record is to be scanned for input to the compiler.

#pragma margins is a z/OS C/C++ directive and an addition to the SAA Standard.

#pragma margins for z/OS C

�� # pragma margins ( m , n )
nomargins

��

#pragma margins for z/OS C++

�� # pragma margins
nomargins

��

In the syntax diagram, you can specify the following parameters for z/OS C:

m The first column of the source input that contains a valid C program. The
value of m must be greater than 0, and less than 32761.

Also, m must be less than or equal to the value of n.

n The last column of the source input that contains a valid C program. The
value of n must be greater than 0, and less than 32761.

You can assign an asterisk (*) to n. The asterisk indicates the last column
of the input record. For example, if you specify #pragma margins(8,*), the
compiler scans from column 8 to the end of the record for input source
statements.

You can use #pragma margins and #pragma sequence together. If they
reserve the same columns, #pragma sequence has priority and it reserves
the columns for sequence numbers. For example, assume columns 1 to 20
are reserved for the margin, and columns 15 to 25 are reserved for
sequence numbers. In this case, the margin will be from column 1 to 14,
and the columns reserved for sequence numbers will be from 15 to 25.

The margin setting specified by the #pragma margins directive applies only to the
source file or include file in which it is found. It has no effect on other #include files.
The #pragma margins and the #pragma nomargins directives come into effect on the
line following the directive. They remain in effect until the compiler encounters
another #pragma margins or #pragma nomargins directive, or until the compiler
reaches the end of the file.

If you use the compile options MARGINS or NOMARGINS with the #pragma margins or
#pragma nomargins directives, the #pragma directives override the compile options.
The compile option specified will be in effect up to, and including, the #pragma
margins or #pragma nomargins directive.

For z/OS C++, the #pragma margins specifies that columns 1 through 72 in the input
record are to be scanned for input to the compiler. The input file can have fixed or
variable record length. The compiler ignores any text in the source input that does
not fall within the range.
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For z/OS C, the default setting is MARGINS(1,72) for fixed-length records, and
NOMARGINS for variable-length records. For z/OS C++, the default is NOMARGINS.

namemangling (z/OS C++ only)
The #pragma namemangling directive sets the maximum length for external symbol
names that are generated from C++ source code. Name mangling is the encoding
of variable names into unique names so that linkers can separate common names
in the language. With respect to the C++ language, name mangling is commonly
used to facilitate the overloading feature and visibility within different scopes.

The syntax is shown in the diagram below. The pragma is unusual in that it is
case-sensitive.

�� # pragma namemangling ( )
ansi ,num_chars
compat

��

where:

ansi Indicates that the name mangling scheme complies with the C++ standard.
The default value for num_chars is 64,000 characters, which is the
maximum.

compat
Indicates that the name mangling scheme is the same as that in earlier
versions of the z/OS C/C++ and OS/390 C/C++ compiler, and is provided
for compatibility with link modules created with earlier compilers. The default
value for num_chars is 255 characters, which is the maximum.

num_chars
Represents a user-specified maximum for the length of a generated
external symbol.

The pragma controls the final length of the mangled name if you specify a length.
Although you are able to do this, the savings in storage space will be small. The
default values are maximums.

noinline

The z/OS #pragma noinline directive is an addition to the SAA Standard.

The #pragma noinline specifies that the function is never inlined when you call it.
This pragma has no effect when you specify NOAUTO with the z/OS C/C++ INLINE
compiler option.

You can place the #pragma noinline directive anywhere in a C++ program. The
directive must be at file scope in a C program.

The #pragma noinline directive is the only way to turn off inlining of functions that
have been implicitly or explicitly inlined at compile time. It also takes precedence
over the z/OS C++ inline keyword.

See “inline (z/OS C Only)” on page 234 for more information.
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IPA Considerations for the #pragma noinline
If you use either the #pragma inline or the #pragma noinline directive in your
source, you can later override them with an appropriate IPA Link control file
directive during the IPA Link step. The compiler uses the IPA Link control file
directive in the following cases:

v If you specify both the #pragma noinline directive and the IPA Link control file
inline directive for a function.

v If you specify both the #pragma inline directive and the IPA Link control file
noinline directive for a function.

object_model (z/OS C++ Only)

The z/OS #pragma object_model directive specifies the object model to use
for the structures, unions, and classes that follow it. All classes in the same
inheritance hierarchy must have the same object model. The following syntax
diagram shows the object models that can be specified.

�� # pragma object_model ( compat )
ibm
pop

��

The arguments for the specifiable object models differ in the areas of layout for the
virtual function table, support for virtual base classes, and name mangling scheme.

v COMPAT is compatible with name mangling and the virtual function table that was
available with the previous releases of the C++ compiler.

v Use ibm if you want improved performance. Class hierarchies with many virtual
base classes can benefit from this option because the size of the derived class is
smaller and access to the virtual function table is faster.

v Use pop to restore the object model to that which was in effect prior to the last
#pragma object_model statement, or to the default object_model if there were no
previous #pragma object_model statements.

The following examples show the use of the #pragma object_model(pop) statement.
// Example 1
// Begin test1.C

/* default object model in effect */

#pragma object_model(ibm)
/* ibm object model in effect from this point */

#pragma object_model(pop)
/* restores the default object model */

// End test1.C

// Example 2
// Begin test2.C

/* default object model in effect */

#pragma object_model(ibm)
/* ibm object model in effect from this point */

#pragma object_model(compat)
/* compat object model is in effect */
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#pragma object_model(pop)
/* restores the ibm object model, which was in effect

prior to the last #pragma object_model statement */

// End test2.C

options (z/OS C Only)

The z/OS #pragma options directive specifies a list of compile options that
are to be processed as if you had typed them on the command line or on the CPARM
parameter of the IBM- supplied cataloged procedures.

�� # pragma options � �

,

( option ) ��

The only compile options that are allowed on a #pragma options directive are:

AGGREGATE|NOAGGREGATE ALIAS|NOALIAS ANSIALIAS|NOANSIALIAS
ARCHITECTURE CHECKOUT|NOCHECKOUT
GONUMBER|NOGONUMBER IGNERRNO|NOIGNERRNO INLINE|NOINLINE
LIBANSI|NOLIBANSI MAXMEM|NOMAXMEM OBJECT|NOOBJECT
OPTIMIZE|NOPTIMIZE RENT|NORENT SERVICE|NOSERVICE
SPILL|NOSPILL START|NOSTART TEST|NOTEST
UPCONV|NOUPCONV TUNE|NOTUNE XREF|NOXREF

If you use a compile option that contradicts the options that are specified on the
#pragma options directive, the compile option overrides the options on the #pragma
options directive.

If you specify an option more than once, the compiler uses the last one you
specified.

IPA Considerations for the #pragma options
You cannot specify the IPA compile-time option for #pragma options.

option_override

With the z/OS #pragma option_override directive, you can specify
optimization with more granularity in your applications. Specifically, this pragma
defines subprogram (C function, C++ method) specific options that override those
specified by the command line options when performing optimizations for code and
data in that subprogram. This enables finer control of program optimization.

The subprogram-specific COMPACT option selects optimizations that tend to minimize
code size in these functions while optimizing the rest of your application for
execution speed.

The subprogram-specific OPTIMIZE option leaves specified functions unoptimized,
while optimizing the rest of your application. The LEVEL option performs the same
function as the OPTIMIZE option.
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One use of this directive is to isolate coding errors that occur only under
optimization.

The subprogram-specific SPILL option allows you to specify large spill values for
specific functions, while allowing the remaining subprograms to have smaller
values.

The subprogram-specific STRICT option allows you to have rigidly controlled
computational operations in some subprograms, while allowing faster operations
where this control is not required.

In addition, you can also override the value of the STRICT option in order to change
the rigor with which z/OS C/C++ performs numeric computations.

�� # pragma option_override �( function_name , ″ option ″ ) ��

In the above syntax 2 diagram, option can be one of the following:

�� OPT ( COMPACT )
,YES
,NO

LEVEL , 0
1
2

SPILL , size
STRICT

,YES
,NO

��

In the above syntax diagram, option translates to the following equivalent z/OS
C/C++ option settings:

option_override Value Equivalent Option Setting

COMPACT COMPACT

COMPACT, YES COMPACT

COMPACT, NO NOCOMPACT

LEVEL, 0 OPT(0)

LEVEL, 1 OPT(1)

LEVEL, 2 OPT(2)

SPILL, size SPILL(size)

2. This pragma directive maintains compatibility with the AIX platform, even though the compiler options supported on the z/OS and
AIX platforms are not the same. Thus, the option syntax for this directive is different from the z/OS C/C++ command line option
syntax for the same option. Within this directive, options are grouped by category. OPT here signifies optimization-related options.
Within the category are the actual options. The optimization-related options are LEVEL (equivalent to the command line option
OPTIMIZE) and STRICT (equivalent to the command line option STRICT). This syntax attempts to be sufficiently platform-neutral such
that this directive is portable between different platforms.
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STRICT STRICT

STRICT, YES STRICT

STRICT, NO NOSTRICT

To use the LEVEL suboption, you must specify a non- zero optimization level for your
program, otherwise, the compiler ignores it. All other cases are meaningful,
including increasing the optimization level.

The #pragma option_override directive only affects functions that are defined in the
compile unit. The pragma directive can appear anywhere in the compilation unit.
That is, it can appear before or after the function definition, before or after the
function declaration, before or after the function has been referenced, and inside or
outside the function definition.

Specifying this directive only affects the setting of the options you have specified.
Notice that option can be enclosed in double quotation marks, so the options are
not subject to macro expansion.

Following is an example of how you might use this directive. Suppose you compile
the following code fragment containing the functions foo() and faa() using OPT(1).
Since it contains the #pragma option_override(faa, "OPT(LEVEL, 0)"), function
faa() will not be optimized.
foo(){

.

.

.
}

#pragma option_override(faa, "OPT(LEVEL, 0)")

faa(){
.
.
.
}

IPA Considerations for the #pragma option_override
You cannot specify the IPA compile-time option for #pragma option_override.

During IPA Compile processing, subprogram-specific options will be used to control
IPA Compile-time optimizations.

During IPA Link processing, subprogram-specific options will be used to control IPA
Link-time optimizations, as well as program partitioning. They will be retained, even
if the related IPA Link command line option is specified.

pack

The z/OS #pragma pack directive specifies the alignment rules to use for the
structures, unions, and classes that follow it. The C compiler performs packing on
definitions if you specify keyword _Packed and on declarations if you specify
#pragma pack. The z/OS C++ compiler does not support keyword _Packed, so it can
only perform packing on declarations. This means that the packing applies to
type-specifiers and not declarators. Prior to using this pragma directive, you should
understand the alignment rules for structures and for unions.
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�� # pragma pack ( )
1
2
4
full
packed
twobyte
reset

��

where:

full Is 4-byte boundary alignment. It is the system default boundary
alignment. This is the same as #pragma pack()and #pragma
pack(4).

packed Is 1-byte boundary alignment. This is the same as #pragma pack(1).

twobyte Is 2-byte boundary alignment. This is the same as #pragma pack(2).

reset Returns the alignment to the previous alignment rule.

The #pragma pack directive packs all structures and unions that follow it in the
program along a boundary specified in the directive. It continues to pack until
another #pragma pack directive changes the packing boundary. The #pragma pack
directive does not apply to forward declarations of structures or unions. For
example, in the following code fragment, the alignment for struct S is full. This is
the rule when the declaration list is declared:
#pragma pack(packed)
struct S;
#pragma pack(full)
struct S { int i, j, k; };

The compiler packs declarations or types. This is different from the _Packed
keyword in z/OS C, where packing is also performed on definitions. For portability,
you should use #pragma pack instead of the _Packed keyword.

The #pragma pack directive does not have the same effect as declaring a structure
as _Packed. The _Packed keyword removes all padding between structure members,
while the #pragma pack directive only specifies the boundaries to align the members.

If you are porting code from other platforms that contain #pragma pack
directives or packed data, consider using the PORT compiler option to increase the
syntax checking for the #pragma pack directive in your code. This option will allow
you to adjust the error recovery action the compiler takes if the #pragma pack is
incompatible with the z/OS C/C++ #pragma pack.

v “Alignment of Unions” on page 64

page (z/OS C Only)

The z/OS #pragma page allows you to specify that a source listing begins at
the top of a page. The parameter pages specifies the number of pages from the
current page on which to begin writing the line of source code that follows the
pragma.

#pragma
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�� # pragma page ( )
pages

��

#pragma page() is the same as #pragma page(1): the source line that follows the
pragma will start on a new page. If you write #pragma page(2), the listing will skip
one blank page and the source line following the #pragma page will start on the
second page after the current page. In all cases, the listing continues.

pagesize (z/OS C Only)

The z/OS #pragma pagesize directive sets the number of lines per page to n
for the generated source listing.

�� # pragma pagesize ( )
n

��

The default page size is 66 lines. The minimum page size that you should set is 25.

IPA Considerations for the #pragma pagesize
This #pragma has the same effect on the IPA Compile step as it does on a regular
compilation. It has no effect on the IPA Link step.

priority (z/OS C++ Only)

The z/OS C++ #pragma priority directive specifies the order in which z/OS
C++ runs constructors for static objects at run time. Destructors for these objects
are run in reverse order during termination.

�� # pragma priority ( n ) ��

n is an integer literal in the range of INT_MIN to INT_MAX. The default value is 0. A
negative value indicates a higher priority; a positive value indicates a lower priority.

z/OS C/C++ reserves the first 1024 priorities (INT_MIN to INT_MIN + 1023) for use by
the compiler and its libraries. More than one #pragma priority can be specified
within a compilation unit. The priority value specified in one pragma applies to the
constructions of all global objects declared after this pragma and before the next
one.

Note that the C++ Standard requires that all global objects within the same
compilation unit be constructed from top to bottom, but it does not impose an
ordering for objects declared in different compilation units. The #pragma priority
tightens this up by imposing a construction order for all objects declared within the
same load module. In order to be consistent with the Standard, there is a restriction
that the priority values specified within the same compilation unit be strictly
increasing.

The effect of a #pragma priority exists only within one load module. A DLL is one
load module. Therefore, #pragma priority cannot be used to control the
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construction order of objects in different DLLs. Please refer to z/OS C/C++
Programming Guide for further discussions on techniques used in handling DLL
static object initialization.

reachable

The z/OS #pragma reachable directive takes a function name, and declares
that the point in the program after that function can be the target of a branch from
some unknown location. That is, you can reach the instruction after the specified
function from a point in your program other than the return statement in the named
function.

�� # pragma reachable �

,

( function_name ) ��

When enabled, the reachable pragma provides information to the compiler that
enables it to explore additional opportunities for optimization.

Unlike the leaves pragma, the reachable pragma is required by the compiler
optimizer whenever the instruction following the call may receive control from some
program point other than the return statement of the called function. If this condition
is true and ″reachable″ is not specified, then the subprogram containing the call
should not be compiled with OPT(1), OPT(2) or IPA. Also see “leaves” on page 238.

When you specify the LIBANSI compiler option, you tell the compiler that that you
are using the system C run-time library, and not your own version of the library. In
this case, the compiler checks whether the setjmp family of functions (setjmp,
_setjmp, sigsetjmp, and _sigsetjmp) contain #pragma reachable. If the functions do
not contain this pragma, the compiler assumes that the pragma is specified.

IPA Considerations for the #pragma reachable
If you specify the #pragma reachable directive in your source code in the IPA
compile step, you cannot override the effects of this directive in the IPA link step.

Effect on IPA Link Step
If you specify the LIBANSI compile option for any compilation unit in the IPA compile
step, the compiler generates information which indicates the setjmp() family of
functions contain the reachable status. If you specify the NOLIBANSI option for the
IPA link step, the attribute remains in effect.

report (z/OS C++ only)
The #pragma report directive controls the generation of diagnostic messages by
allowing you to specify a minimum severity level for a message in order for it to
display, or by allowing you to enable or disable a specific message regardless of
the prevailing report level.

The pragma takes precedence over #pragma info and most compiler options. For
example, if you use #pragma report to disable a compiler message, that message
will not be displayed with any FLAG compiler option setting. Similarly, if you specify
the SUPPRESS compiler option for a message but also specify #pragma
report(enable) for the same message, the pragma will prevail.

#pragma
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The #pragma report(pop) reverts the report level to that which was previously in
effect. If no previous report level has been specified, a warning is issued, and the
report level remains unchanged. The default report level is Informational (I), which
displays messages of all types.

�� # pragma report
I

( level , E )
W

enable , message_number
disable

pop

��

where:

level Specifies a minimum severity level for diagnostic messages in order for
them to display.

E Indicates that only error messages will display.

W Indicates that warning and error messages will display.

I Indicates that all diagnostic messages will display. Informational messages
are of the lowest severity.

message_number
Represents a message identifier, which consists of a prefix followed by the
message number, for example, CCN1004.

runopts

The z/OS #pragma runopts directive specifies a list of run-time options that
z/OS C/C++ uses at execution time.

�� # pragma runopts � �

,

( option ) ��

Specify your #pragma runopts directive in the compilation unit that contains main. If
more than one compilation unit contains a #pragma runopts directive, unpredictable
results can occur. The #pragma runopts directive only affects compilation units
containing main().

If a suboption to #pragma runopts is not a valid C or C++ token, you can surround
the suboptions to #pragma runopts in double quotes. For example, use:
#pragma runopts ( " RPTSTG(ON) TEST(,,,VADTCPIP&1.2.3.4:*) " )

instead of:
#pragma runopts ( RPTSTG(ON) TEST(,,,VADTCPIP&1.2.4.3:*) )

Refer to “target (z/OS C Only)” on page 256 for information about how #pragma
target and the TARGET compile-time option affect #pragma runopts.

IPA Considerations for the #pragma runopts
This #pragma only affects the IPA Compile step if you specify the OBJECT suboption
of the IPA compiler option.

#pragma
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The IPA Compile step passes the effects of this directive to the IPA Link step.

Consider if you specify ARGPARSE|NOARGPARSE, EXECOPS|NOEXECOPS, PLIST, or
REDIR|NOREDIR either on the #pragma runopts directive or as a compile-time option
on the IPA Compile step, and then specify the compile-time option on the IPA Link
step. In this case, you override the value that you specified on the IPA Compile
step.

If you specify the TARGET compile-time option on the IPA Link step, it has the
following effects on #pragma runopts :
v It overrides the value you specified for #pragma runopts(ENV). If you specify

TARGET(LE) or TARGET(), the compiler sets the value of #pragma runopts(ENV) to
MVS. If you specify TARGET(IMS), the compiler sets the value of #pragma
runopts(ENV) to IMS.

v It may override the value you specified for #pragma runopts(PLIST). If you
specify TARGET(LE) or TARGET(), and you specified something other than HOST for
#pragma runopts(PLIST), the compiler sets the value of #pragma runopts(PLIST)
to HOST. If you specify TARGET(IMS), the compiler sets the value of #pragma
runopts(PLIST) to IMS.

For #pragma runopts options other than those that are listed above, the IPA Link
step follows these steps to determine which #pragma runopts value to use:

1. The IPA Link step uses the #pragma runopts specification from the main()
routine, if the routine exists.

2. If no main() routine exists, the IPA Link step follows these steps:

a. If you define the CEEUOPT variable, the IPA Link step uses the #pragma
runopts value from the first compilation unit that it finds that contains
CEEUOPT.

b. If you have not defined the CEEUOPT variable in any compilation unit, the
IPA Link step uses the #pragma runopts value from the first compilation unit
that it processes.

The sequence of compilation unit processing is arbitrary.

To avoid problems, you should specify #pragma runopts only in your main() routine.
If you do not have a main() routine, specify it in only one other module.

sequence

The z/OS #pragma sequence directive specifies the section of the input
record that is to contain sequence numbers. The #pragma nosequence directive
specifies that the input record does not contain sequence numbers.

#pragma sequence is specific to z/OS C/C++ and an addition to the SAA Standard.

#pragma sequence for z/OS C

�� # pragma sequence ( m , n )
nosequence

��

#pragma
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#pragma sequence for z/OS C++

�� # pragma sequence
nosequence

��

In the syntax diagram you can specify the following parameters for z/OS C:

m The column number of the left-hand margin. The value of m must be
greater than 0, and less than 32761.

Also, m must be less than or equal to the value of n.

n The column number of the right-hand margin. The value of n must be
greater than 0, and less than 32761.

You can assign an asterisk (*) to n that indicates the last column of the
input record. For example, SEQUENCE(74,*) indicates that sequence
numbers are between column 74 and the end of the input record.

You can use #pragma sequence and #pragma margins together. If they
reserve the same columns, #pragma sequence has priority, and z/OS C/C++
reserves the columns for sequence numbers. For example, consider if the
columns reserved for the margin are 1 to 20 and the columns reserved for
sequence numbers are 15 to 25. In this case, the margin will be from
column 1 to 14, and the columns reserved for sequence numbers will be
from 15 to 25. For more information on the #pragma margins directive, refer
to “margins” on page 243.

The sequence setting specified by the #pragma sequence directive applies only to
the file (source file or include file) that contains it. The setting has no effect on other
#include files in the file. The sequence number area specified on the #pragma
sequence directive comes into effect on the line following the directive. It remains in
effect until it encounters another #pragma sequence or a #pragma nosequence
directive or until it reaches the end of the file.

If you use the compile-time options SEQUENCE|NOSEQUENCE with the #pragma sequence
or #pragma nosequence directives, the #pragma directive overrides the compile
options. The compile option is in effect up to, and including, the #pragma sequence
or the #pragma nosequence directive.

For z/OS C++, the #pragma sequence directive defines that columns 73 through 80
of the input record (fixed or variable length) contain sequence numbers. You cannot
specify columns (m,n). The default compile option for z/OS C++ is NOSEQUENCE.

For z/OS C, the default setting is SEQUENCE(73,80) for fixed-length records, and
NOSEQUENCE for variable length records.

skip (z/OS C Only)

The z/OS #pragma skip directive skips the specified number of lines in the
generated source listing. The value of lines must be a positive integer less than
255. If you omit lines, the compiler skips one line.

�� # pragma skip ( )
lines

��

#pragma
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strings

The z/OS #pragma strings directive sets the storage type for strings. It
specifies that the compiler can place strings into read-only memory or must place
strings into read/write memory.

�� # pragma strings ( writable )
writeable
readonly

��

This pragma must appear before any z/OS C or C++ code in a file.

C and C++ strings are read-only by default because the ROSTRING compiler option,
which informs the compiler that string literals are read-only, is now the compiler
default. Formerly, you could use the ROSTRING compiler option instead of using the
#pragma strings(readonly) directive.

IPA Considerations for the #pragma strings
During the IPA Link step, the compiler compares the #pragma strings specifications
for individual compilation units. If it finds differences, it treats the strings as if you
specified #pragma strings(writeable) for all compilation units.

subtitle (z/OS C Only)

The z/OS #pragma subtitle directive places the text that is specified by
subtitle on all subsequent pages of the generated source listing.

�� # pragma subtitle ( " subtitle " ) ��

target (z/OS C Only)

The z/OS #pragma target directive specifies the run-time environment for
which z/OS C/C++ creates the object.

Note: You cannot specify the release suboptions using the #pragma target directive
as you can with the TARGET compile option.

�� # pragma target ( )
LE
IMS

��

The compiler generates code to run under these options:

LE Generates code to run under the z/OS Language Environment run-time
library. This is the default behavior, which acts the same as specifying
#pragma target().

IMS Generates object code to run under IMS.

#pragma
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If you have more than one preprocessor directive, the only #pragma directives that
can precede #pragma target are #pragma filetag, #pragma chars, #pragma langlvl,
and #pragma longname.

Specifying #pragma target() or #pragma target(LE) has the following effects on
#pragma runopts(ENV) and #pragma runopts(PLIST):
v If you did not specify values for #pragma runopts(ENV) or #pragma

runopts(PLIST), the compiler sets the #pragma s to #pragma runopts(ENV(MVS))
and #pragma runopts(PLIST(HOST)).

v If you did specify values for #pragma runopts(ENV) or #pragma runopts(PLIST),
the values do not change.

Specifying #pragma target(IMS) has the following effects on #pragma runopts(ENV)
and #pragma runopts(PLIST) :
v If you did not specify values for #pragma runopts(ENV) or #pragma

runopts(PLIST), the compiler sets the #pragma s to #pragma runopts(ENV(IMS))
and #pragma runopts(PLIST(OS)).

v If you did specify values for #pragma runopts(ENV) or #pragma runopts(PLIST),
the values do not change.

IPA Considerations for the #pragma target
This #pragma only affects the IPA Compile step if you specify the OBJECT suboption
of the IPA compiler option.

The IPA Compile step passes the effects of this #pragma directive to the IPA Link
step.

If you specify different #pragma target directives for different compilation units, the
IPA Link step uses the ENV and PLIST information from the compilation unit
containing main(). If there is no main(), it uses information from the first compilation
unit it finds. If you specify the TARGET compile option for the IPA Link step, it
overrules the #pragma target directive.

title (z/OS C Only)

The z/OS #pragma title directive places the text that is specified by title on
all subsequent pages of the generated source listing.

�� # pragma title ( " title " ) ��

variable

The z/OS #pragma variable directive specifies that z/OS C/C++ is to use
the named external object in either a reentrant or non-reentrant fashion. If an object
is marked as RENT, its references or its definition will be in the writable static area
that is in modifiable storage. If an object is marked as NORENT, its references or
definition is in the code area and is in potentially read-only storage.

�� # pragma variable ( identifier , RENT )
NORENT

��

#pragma
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NORENT does not apply to, and has no affect on, program variables with static
storage class. z/OS C/C++ always includes these variables with the writable static
variables. Variables are reentrant by default for C++ so that RENT has no affect.

The #pragma variable directive is an addition to the SAA Standard.

You can use the ROCONST and RENT compiler options so that const variables are not
placed into the Writeable Static Area instead of using the #pragma
variable(var_name, NORENT) directive.

If the specification for a const variable in a #pragma variable directive conflicts with
the ROCONST option, the pragma directive takes precedence over the compiler option,
and the compiler issues an informational message.

The following restrictions apply:

v If an identifier is defined in one compilation unit and used in another, the
reentrant or non-reentrant status of the variable must be the same in all
compilation units.

v A non-reentrant pointer variable cannot take an address as an initializer: the
compiler will treat the variable as reentrant if necessary (in other words, it will
ignore the pragma). Initializers for non-reentrant variables should be compile-time
constants. Due to code relocation during execution time, an address in a
program that has both reentrant and non-reentrant variables is never considered
a compile-time constant. This restriction includes the addresses of string literals.

The following code fragment leads to undefined behavior when compiled with the
RENT option.
int i;
int *p = &i;
#pragma variable(p norent)

The variable i is reentrant, but the pointer p is non-reentrant. If the code is in a
DLL, there will only be one copy of p but multiple copies of i, one for each caller of
the DLL.

wsizeof

The z/OS #pragma wsizeof directive toggles the behavior of the sizeof
operator between that of the C and C++ compilers prior to and including the C/C++
MVS/ESA Version 3 Release 1 product, and the z/OS C/C++ feature. As explained
below, the difference occurs only when using sizeof on function return types. Other
behaviors of sizeof remain the same.

Specify the pragma as follows:

�� #pragma wsizeof ( ON )
RESUME

��

When using the sizeof operator, the z/OS C and C++ compilers prior to and
including C/C++ MVS/ESA Version 3 Release 1, returned the size of the widened
type instead of the original type for function return types. For example, in the
following code fragment, using the older compilers, i has a value of 4.

char foo();
i = sizeof foo();

#pragma
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Using the z/OS C/C++ compiler, i has a the value of 1, which is the size of the
original type, char.

After a #pragma wsizeof(on) is encountered in a source program, all subsequent
sizeof operators return the widened size for function return types. The behavior
prior to the #pragma wsizeof(on), which can be the old or current behavior, is
saved. z/OS C/C++ reinstates this saved behavior when it encounters a matching
#pragma wsizeof(resume). The saving action works on a stack. That is, a resume
reinstates the most recently saved state as the following example demonstrates:

/* Normal behavior of sizeof to start with. */
/* ... some code here ... */

#pragma wsizeof(on) /* (1) old behavior of sizeof */
...

#pragma wsizeof(on) /* (2) old behavior of sizeof */
...

#pragma wsizeof(resume) /* matches (2) */
/* still old behavior of sizeof */

...
#pragma wsizeof(resume) /* matches (1) */

/* normal behavior of sizeof */

The compiler will match on and resume throughout the entire compile unit. That is,
the effect of a #pragma wsizeof(on) can extend beyond a header file. Ensure the
on and resume pragmas are matched in your compile unit.

Note: Dangling the resume pragma leads to undefined behavior. The effect of an
unmatched on pragma can extend to the end of the source file.

Use the wsizeof pragma in old header files, where you require the old behavior of
the sizeof operator. By guarding the header file with a #pragma wsizeof(on) at the
start of the header, and a #pragma wsizeof(resume) at the end, you can use the old
header file with new applications.

Using the WSIZEOF compile option and #pragma wsizeof
The z/OS WSIZEOF compile option has exactly the same effect as inserting a
#pragma wsizeof(on) at the beginning of the source file. If another #pragma wsizeof
exists in the source code, z/OS C/C++ toggles the behavior of the sizeof operator,
as described above.

You can use the WSIZEOF compile option to save editing your source when you want
the old behavior of the sizeof operator for your entire source file.

IPA Considerations for the z/OS #pragma wsizeof
During the IPA Compile step, the size of each function return value is resolved
during source processing. The IPA Compile and Link steps do not alter these sizes.
The IPA object code from compilation units with different wsizeof settings is merged
together during the IPA Link step.

#pragma
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Chapter 10. Namespaces

A namespace is an optionally named scope. You declare names inside a
namespace as you would for a class or an enumeration. You can access names
declared inside a namespace the same way you access a nested class name by
using the scope resolution (::) operator. However namespaces do not have the
additional features of classes or enumerations. The primary purpose of the
namespace is to add an additional identifier (the name of the namespace) to a
name.

v “C++ Scope Resolution Operator ::” on page 102

Defining Namespaces

In order to uniquely identify a namespace, use the namespace keyword.

Syntax — namespace

�� namespace
identifier

{ namespace_body } ��

The identifier in an original namespace definition is the name of the namespace.
The identifier may not be previously defined in the declarative region in which the
original namespace definition appears, except in the case of extending namespace.
If an identifier is not used, the namespace is an unnamed namespace.

v “Unnamed Namespaces” on page 264

Declaring Namespaces

The identifier used for a namespace name should be unique. It should not
be used previously as a global identifier.
namespace Raymond {

// namespace body here...
}

In this example, Raymond is the identifier of the namespace. If you intend to access
a namespace’s elements, the namespace’s identifier must be known in all
translation units.

v “Global Scope” on page 2

Creating a Namespace Alias

An alternate name can be used in order to refer to a specific namespace
identifier.
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namespace INTERNATIONAL_BUSINESS_MACHINES {
void f();

}

namespace IBM = INTERNATIONAL_BUSINESS_MACHINES;

In this example, the IBM identifier is an alias for INTERNATIONAL_BUSINESS_MACHINES.
This is useful for referring to long namespace identifiers.

If a namespace name or alias is declared as the name of any other entity in the
same declarative region, a compiler error will result. Also, if a namespace name
defined at global scope is declared as the name of any other entity in any global
scope of the program, a compiler error will result.

v “Global Scope” on page 2

Creating an Alias for a Nested Namespace

Namespace definitions hold declarations. Since a namespace definition is a
declaration itself, namespace definitions can be nested.

An alias can also be applied to a nested namespace.
namespace INTERNATIONAL_BUSINESS_MACHINES {

int j;
namespace NESTED_IBM_PRODUCT {

void a() { j++; }
int j;
void b() { j++; }

}
}
namespace NIBM = INTERNATIONAL_BUSINESS_MACHINES::NESTED_IBM_PRODUCT

In this example, the NIBM identifier is an alias for the namespace
NESTED_IBM_PRODUCT. This namespace is nested within the
INTERNATIONAL_BUSINESS_MACHINES namespace.

Extending Namespaces

Namespaces are extensible. You can add subsequent declarations to a
previously defined namespace. Extensions may appear in files separate from or
attached to the original namespace definition. For example:
namespace X { // namespace definition

int a;
int b;
}

namespace X { // namespace extension
int c;
int d;
}

namespace Y { // equivalent to namespace X
int a;
int b;
int c;
int d;
}
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In this example, namespace X is defined with a and b and later extended with c and
d. namespace X now contains all four members. You may also declare all of the
required members within one namespace. This method is represented by namespace
Y. This namespace contains a, b, c, and d.

Namespaces and Overloading

You can overload functions across namespaces. For example:
// Original X.h:

f(int);

// Original Y.h:
f(char);

// Original program.c:
#include "X.h"
#include "Y.h"

void z()
{

f('a'); // calls f(char) from Y.h
}

Namespaces can be introduced to the previous example without drastically
changing the source code.
// New X.h:
namespace X {

f(int);
}

// New Y.h:
namespace Y {

f(char);
}

// New program.c:
#include "X.h"
#include "Y.h"

using namespace X;
using namespace Y;

void z()
{

f('a'); // calls f() from Y.h
}

In program.c, function void z() calls function f(), which is a member of
namespace Y. If you place the using directives in the header files, the source code
for program.c remains unchanged.

v “Chapter 11. Overloading” on page 269
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Unnamed Namespaces

A namespace with no identifier before an opening brace produces an
unnamed namespace. Each translation unit may contain its own unique unnamed
namespace. The following example demonstrates how unnamed namespaces are
useful.
#include <iostream>

using namespace std;

namespace {
const int i = 4;
int variable;
}

int main()
{

cout << i << endl;
variable = 100;
return 0;

}

In the previous example, the unnamed namespace permits access to i and
variable without using a scope resolution operator.

The following example illustrates an improper use of unnamed namespaces.
#include <iostream>

using namespace std;

namespace {
const int i = 4;
}

int i = 2;

int main()
{

cout << i << endl; // error
return 0;

}

Inside main, i causes an error because the compiler cannot distinguish between the
global name and the unnamed member with the same name. In order for the
previous example to work, the namespace must be uniquely identified with an
identifier and i must specify the namespace it is using.

You can extend an unnamed namespace within the same translation unit. For
example:
#include <iostream>

using namespace std;

namespace {
int variable;
void funct (int);
}

namespace {
void funct (int i) { cout << i << endl; }
}
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int main()
{

funct(variable);
return 0;

}

both the prototype and definition for funct are members of the same unnamed
namespace.

Note: Items defined in an unnamed namespace have internal linkage. Rather than
using the keyword static to define items with internal linkage, define them in
an unnamed namespace instead.

v “Program Linkage” on page 5
v “Internal Linkage” on page 5

Namespace Member Definitions

A namespace can define its own members within itself or externally using
explicit qualification. The following is an example of a namespace defining a
member internally:
namespace A {

void b() { /* definition */ }
}

Within namespace A member void b() is defined internally.

A namespace can also define its members externally using explicit qualification on
the name being defined. The entity being defined must already be declared in the
namespace and the definition must appear after the point of declaration in a
namespace that encloses the declaration’s namespace.

The following is an example of a namespace defining a member externally:
namespace A {

namespace B {
void f();

}
void B::f() { /* defined outside of B */ }

}

In this example, function f() is declared within namespace B and defined (outside
B) in A.

Namespaces and Friends

Every name first declared in a namespace is a member of that namespace.
If a friend declaration in a non-local class first declares a class or function, the
friend class or function is a member of the innermost enclosing namespace.

The following is an example of this structure:
// f has not yet been defined
void z(int);
namespace A {

class X {

Chapter 10. Namespaces 265



friend void f(X); // A::f is a friend
};

// A::f is not visible here
X x;
void f(X) { /* definition */} // f() is defined and known to be a friend

}

using A::x;

void z()
{

A::f(x); // OK
A::X::f(x); // error: f is not a member of A::X

}

In this example, function f() can only be called through namespace A using the call
A::f(s);. Attempting to call function f() through class X using the A::X::f(x); call
results in a compiler error. Since the friend declaration first occurs in a non-local
class, the friend function is a member of the innermost enclosing namespace and
may only be accessed through that namespace.

v “Friends” on page 310

Using Directive

A using directive provides access to all namespace qualifiers and the scope
operator. This is accomplished by applying the using keyword to a namespace
identifier.

Syntax — Using directive

�� using namespace name ; ��

The name must be a previously defined namespace. The using directive may be
applied at the global and local scope but not the class scope. Local scope takes
precedence over global scope by hiding similar declarations.

If a scope contains a using directive that nominates a second namespace and that
second namespace contains another using directive, the using directive from the
second namespace will act as if it resides within the first scope.
namespace A {

int i;
}
namespace B {

int i;
using namespace A;

}
void f()
{

using namespace B;
i = 7; // error

}

In this example, attempting to initialize i within function f() causes a compiler error,
because function f() cannot know which i to call; i from namespace A, or i from
namespace B.
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v “The using Declaration and Class Members” on page 322

The using Declaration and Namespaces

A using declaration provides access to a specific namespace member. This
is accomplished by applying the using keyword to a namespace name with its
corresponding namespace member.

Syntax — Using declaration

�� using namespace :: member ��

In this syntax diagram, the qualifier name follows the using declaration and the
member follows the qualifier name. For the declaration to work, the member must
be declared inside the given namespace. For example:
namespace A {

int i;
int k;
void f;
void g;
}

using A::k

In this example, the using declaration is followed by A, the name of namespace A,
which is then followed by the scope operator (::), and k. This format allows k to be
accessed outside of namespace A through a using declaration. After issuing a using
declaration, any extension made to that specific namespace will not be known at
the point at which the using declaration occurs.

In the incremental compiler, all names in all extents of a namespace will be made
visible by a using declaration regardless of their positions.

Overloaded versions of a given function must be included in the namespace prior to
that given function’s declaration. A using declaration may appear at namespace,
block and class scope.

v “The using Declaration and Class Members” on page 322

Explicit Access

To explicitly qualify a member of a namespace, use the namespace
identifier with a :: scope resolution operator.

Syntax — Explicit access qualification

�� namespace_name :: member ��

For example:
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namespace VENDITTI {
void j()

};

VENDITTI::j();

In this example, the scope resolution operator provides access to the function j
held within namespace VENDITTI. The scope resolution operator :: is used to
access identifiers in both global and local namespaces. Any identifier in an
application can be accessed with sufficient qualification. Explicit access cannot be
applied to an unnamed namespace.

v “C++ Scope Resolution Operator ::” on page 102
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Chapter 11. Overloading

If you specify more than one definition for a function name or an operator in
the same scope, you have overloaded that function name or operator.

An overloaded declaration is a declaration that had been declared with the same
name as a previously declared declaration in the same scope, except that both
declarations have different types.

If you call an overloaded function name or operator, the compiler determines the
most appropriate definition to use by comparing the argument types you used to
call the function or operator with the parameter types specified in the definitions.
The process of selecting the most appropriate overloaded function or operator is
called overload resolution.

v “Overloading Functions”
v “Overloading Operators” on page 271
v “Overload Resolution” on page 280

Overloading Functions

You overload a function name f by declaring more than one function with
the name f in the same scope. The declarations of f must differ from each other by
the types and/or the number of arguments in the argument list. When you call a
overloaded function named f, the correct function is selected by comparing the
argument list of the function call with the parameter list of each of the overloaded
candidate functions with the name f. A candidate function is a function that can be
called based on the context of the call of the overloaded function name.

Consider a function print, which displays an int. As shown in the following
example, you can overload the function print to display other types, for example,
double and char*. You can have three functions with the same name, each
performing a similar operation on a different data type:
#include <iostream>
using namespace std;

void print(int i) {
cout << " Here is int " << i << endl;

}
void print(double f) {

cout << " Here is float " << f << endl;
}

void print(char* c) {
cout << " Here is char* " << c << endl;

}

int main() {
print(10);
print(10.10);
print("ten");

}

The following is the output of the above example:
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Here is int 10
Here is float 10.1
Here is char* ten

Restrictions on Overloaded Functions

You cannot overload the following function declarations if they appear in the
same scope. Note that this list applies only to explicitly declared functions and
those that have been introduced through using declarations:
v Function declarations that differ only by return type. For example, you cannot

declare the following declarations:
int f();
float f();

v Member function declarations that have the same name and the same parameter
types, but one of these declarations is a static member function declaration. For
example, you cannot declare the following two member function declarations of
f():
struct A {

static int f();
int f();

};
v Member function template declarations that have the same name, the same

parameter types, and the same template parameter lists, but one of these
declarations is a static template member function declaration.

v Function declarations that have equivalent parameter declarations. These
declarations are not allowed because they would be declaring the same function.

v Function declarations with parameters that differ only by the use of typedef
names that represent the same type. Note that a typedef is a synonym for
another type, not a separate type. For example, the following two declarations of
f() are declarations of the same function:
typedef int I;
void f(float, int);
void f(float I);

v Function declarations with parameters that differ only because one is a pointer
and the other is an array. For example, the following are declarations of the
same function:
f(char*);
f(char[10]);

The first array dimension is insignificant when differentiating parameters; all other
array dimensions are significant. For example, the following are declarations of
the same function:
g(char(*)[20]);
g(char[5][20]);

The following two declarations are not equivalent:
g(char(*)[20]);
g(char(*)[40]);

v Function declarations with parameters that differ only because one is a function
type and the other is a pointer to a function of the same type. For example, the
following are declarations of the same function:
void f(int(float));
void f(int (*)(float));

v Function declarations with parameters that differ only because of const and
volatile qualifiers. This only applies if you apply any of these qualifiers appear at
the outermost level of an parameter type specification. For example, the following
are declarations of the same function:

270 C/C++ Language Reference



int f(int);
int f(const int);
int f(volatile int);

Note that you can differentiate parameters with const and volatile qualifiers if
you apply these qualifiers within a parameter type specification. For example, the
following declarations are not equivalent:
void g(int*);
void g(const int*);
void g(volatile int*);

The following declarations are also not equivalent:
void g(float&);
void g(const float&);
void g(volatile float&);

v Function declarations with parameters that differ only because their default
arguments differ. For example, the following are declarations of the same
function:
void f(int);
void f(int i = 10);

v Multiple functions with extern "C" language-linkage and the same name,
regardless of whether their parameter lists are different.

v “The using Declaration and Namespaces” on page 267
v “typedef” on page 43
v “volatile and const Qualifiers” on page 69
v “Linkage Specifications — Linking to Non-C++ Programs” on page 7

Overloading Operators

You can redefine or overload the function of most built-in operators in C++.
These operators can be overloaded globally or on a class-by-class basis.
Overloaded operators are implemented as functions and can be member functions
or global functions.

An overloaded operator is called an operator function. You declare an operator
function with the keyword operator preceding the operator. Overloaded operators
are distinct from overloaded functions, but like overloaded functions, they are
distinguished by the number and types of operands used with the operator.

Consider the standard + (plus) operator. When this operator is used with operands
of different standard types, the operators have slightly different meanings. For
example, the addition of two integers is not implemented in the same way as the
addition of two floating-point numbers. C++ allows you to define your own meanings
for the standard C++ operators when they are applied to class types. In the
following example, a class called complx is defined to model complex numbers, and
the + (plus) operator is redefined in this class to add two complex numbers.

CCNX12B
// This example illustrates overloading the plus (+) operator.

#include <iostream>
using namespace std;

class complx
{
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double real,
imag;

public:
complx( double real = 0., double imag = 0.); // constructor
complx operator+(const complx&) const; // operator+()

};

// define constructor
complx::complx( double r, double i )
{

real = r; imag = i;
}

// define overloaded + (plus) operator
complx complx::operator+ (const complx& c) const
{

complx result;
result.real = (this->real + c.real);
result.imag = (this->imag + c.imag);
return result;

}

int main()
{

complx x(4,4);
complx y(6,6);
complx z = x + y; // calls complx::operator+()

}

You can overload any of the following operators:

+ − * / % | & | ˜
! = < > += −= *= /= %=
|= &= |= << >> <<= >>= == !=
<= >= && || ++ −− , −>* −>
( ) [ ] new delete new[] delete[]

where () is the function call operator and [] is the subscript operator.

You can overload both the unary and binary forms of the following operators:

+ - * &

You cannot overload the following operators:

. .* :: ?:

You cannot overload the preprocessor symbols # and ##.

An operator function can be either a nonstatic member function, or a nonmember
function with at least one parameter that has class, reference to class, enumeration,
or reference to enumeration type.

You cannot change the precedence, grouping, or the number of operands of an
operator.

An overloaded operator (except for the function call operator) cannot have default
arguments or an ellipsis in the argument list.

You must declare the overloaded =, [], (), and -> operators as nonstatic member
functions to ensure that they receive lvalues as their first operands.
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The operators new, delete, new[], and delete[] do not follow the general rules
described in this section.

All operators except the = operator are inherited.

v “Free Store” on page 353

Overloading Unary Operators

You overload a unary operator with either a nonstatic member function that
has no parameters, or a nonmember function that has one parameter. Suppose a
unary operator @ is called with the statement @t, where t is an object of type T. A
nonstatic member function that overloads this operator would have the following
form:
return_type operator@()

A nonmember function that overloads the same operator would have the following
form:
return_type operator@(T)

An overloaded unary operator may return any type.

The following example overloads the ! operator:
#include <iostream>
using namespace std;

struct X { };

void operator!(X) {
cout << "void operator!(X)" << endl;

}

struct Y {
void operator!() {

cout << "void Y::operator!()" << endl;
}

};

struct Z { };

int main() {
X ox; Y oy; Z oz;
!ox;
!oy;

// !oz;
}

The following is the output of the above example:
void operator!(X)
void Y::operator!()

The operator function call !ox is interpreted as operator!(x). The call !oy is
interpreted as y.operator!(). (The compiler would not allow !oz because the !
operator has not been defined for class Z.)

v “Unary Expressions” on page 113
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Overloading Binary Operators

You overload a binary unary operator with either a nonstatic member
function that has one parameter, or a nonmember function that has two parameters.
Suppose a binary operator @ is called with the statement t @ u, where t is an
object of type T, and u is an object of type U. A nonstatic member function that
overloads this operator would have the following form:
return_type operator@(T)

A nonmember function that overloads the same operator would have the following
form:
return_type operator@(T, U)

An overloaded binary operator may return any type.

The following example overloads the * operator:
struct X {

// member binary operator
void operator*(int) { }

};

// non-member binary operator
void operator*(X, float) { }

int main() {
X x;
int y = 10;
float z = 10;

x * y;
x * z;

}

The call x * y is interpreted as x.operator*(y). The call x * z is interpreted as
operator*(x, z).

v “Binary Expressions” on page 124

Overloading Assignments

You overload the assignment operator, operator=, with a nonstatic member
function that has only one parameter. You cannot declare an overloaded
assignment operator that is a nonmember function. The following example shows
how you can overload the assignment operator for a particular class:
struct X {

int data;
X& operator=(X& a) { return a; }
X& operator=(int a) {

data = a;
return *this;

}
};

int main() {
X x1, x2;
x1 = x2; // call x1.operator=(x2)
x1 = 5; // call x1.operator=(5)

}
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The assignment x1 = x2 calls X& X::operator=(X&). The assignment x1 = 5 calls
X& X::operator=(int).

Note that because the compiler implicitly declares a copy assignment operator for a
class if you do not define one yourself, the copy assignment operator of a derived
class will hide the copy assignment operator of its base class. However, you can
declare any copy assignment operator as virtual. The following example
demonstrates this:
#include <iostream>
using namespace std;

struct A {
A& operator=(char) {

cout << "A& A::operator=(char)" << endl;
return *this;

}
virtual A& operator=(const A&) {

cout << "A& A::operator=(const A&)" << endl;
return *this;

}
};

struct B : A {
B& operator=(char) {

cout << "B& B::operator=(char)" << endl;
return *this;

}
virtual B& operator=(const A&) {

cout << "B& B::operator=(const A&)" << endl;
return *this;

}
};

struct C : B { };

int main() {
B b1;
B b2;
A* ap1 = &b1;
A* ap2 = &b1;
*ap1 = 'z';
*ap2 = b2;

C c1;
// c1 = 'z';
}

The following is the output of the above example:
A& A::operator=(char)
B& B::operator=(const A&)

The assignment *ap1 = 'z' calls A& A::operator=(char). Because this operator
has not been declared virtual, the compiler chooses the function based on the type
of the pointer ap1. The assignment *ap2 = b2 calls B& B::operator=(const &A).
Because this operator has been declared virtual, the compiler chooses the function
based on the type of the object that the pointer ap1 points to. The compiler would
not allow the assignment c1 = 'z' because the implicitly declared copy assignment
operator declared in class C hides B& B::operator=(char).

v “Member Functions” on page 295
v “Copy Assignment Operators” on page 363
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v “Assignment Expressions” on page 134

Overloading Function Calls

The function call operator, when overloaded, does not modify how functions
are called. Rather, it modifies how the operator is to be interpreted when applied to
objects of a given type.

You overload the function call operator, operator(), with a nonstatic member
function that has any number of parameters. If you overload a function call operator
for a class its declaration will have the following form:
return_type operator()(parameter_list)

Unlike all other overloaded operators, you can provide default arguments and
ellipses in the argument list for the function call operator.

The following example demonstrates how the compiler interprets function call
operators:
struct A {

void operator()(int a, char b, ...) { }
void operator()(char c, int d = 20) { }

};

int main() {
A a;
a(5, 'z', 'a', 0);
a('z');

// a();
}

The function call a(5, 'z', 'a', 0) is interpreted as a.operator()(5, 'z', 'a',
0). This calls void A::operator()(int a, char b, ...). The function call a('z') is
interpreted as a.operator()('z'). This calls void A::operator()(char c, int d =
20). The compiler would not allow the function call a() because its argument list
does not match any function call parameter list defined in class A.

The following example demonstrates an overloaded function call operator:
class Point {
private:

int x, y;
public:

Point() : x(0), y(0) { }
Point& operator()(int dx, int dy) {

x += dx;
y += dy;
return *this;

}
};

int main() {
Point pt;

// Offset this coordinate x with 3 points
// and coordinate y with 2 points.
pt(3, 2);

}
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The above example reinterprets the function call operator for objects of class Point.
If you treat an object of Point like a function and pass it two integer arguments, the
function call operator will add the values of the arguments you passed to Point::x
and Point::y respectively.

v “Function Calls ( )” on page 104

Overloading Subscripting

You overload operator[] with a nonstatic member function that has only one
parameter. The following example is a simple array class that has an overloaded
subscripting operator. The overloaded subscripting operator throws an exception if
you try to access the array outside of its specified bounds:
#include <iostream>
using namespace std;

template <class T> class MyArray {
private:

T* storage;
int size;

public:
MyArray(int arg = 10) {

storage = new T[arg];
size = arg;

}

xMyArray() {
delete[] storage;
storage = 0;

}

T& operator[](const int location) throw (const char *);
};

template <class T> T& MyArray<T>::operator[](const int location)
throw (const char *) {

if (location < 0 || location >= size) throw "Invalid array access";
else return storage[location];

}

int main() {
try {

MyArray<int> x(13);
x[0] = 45;
x[1] = 2435;
cout << x[0] << endl;
cout << x[1] << endl;
x[13] = 84;

}
catch (const char* e) {

cout << e << endl;
}

}

The following is the output of the above example:
45
2435
Invalid array access

The expression x[1] is interpreted as x.operator[](1) and calls int&
MyArray<int>::operator[](const int).
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v “Array Subscript [ ] (Array Element Specification)” on page 106

Overloading Class Member Access

You overload operator-> with a nonstatic member function that has no
parameters. The following example demonstrates how the compiler interprets
overloaded class member access operators:
struct Y {

void f() { };
};

struct X {
Y* ptr;
Y* operator->() {

return ptr;
};
};

int main() {
X x;
x->f();

}

The statement x->f() is interpreted as (x.operator->())->f().

The operator-> is used (often in conjunction with the pointer-dereference operator)
to implement ″smart pointers.″ These pointers are objects that behave like normal
pointers except they perform other tasks when you access an object through them,
such as automatic object deletion (either when the pointer is destroyed, or the
pointer is used to point to another object), or reference counting (counting the
number of smart pointers that point to the same object, then automatically deleting
the object when that count reaches zero).

One example of a smart pointer is included in the C++ Standard Library called
auto_ptr. You can find it in the <memory> header. The auto_ptr class implements
automatic object deletion.

v “Arrow Operator −>” on page 107

Overloading Increment and Decrement

You overload the prefix increment operator ++ with either a nonmember
function operator that has one argument of class type or a reference to class type,
or with a member function operator that has no arguments.

In the following example, the increment operator is overloaded in both ways:
class X {
public:

// member prefix ++x
void operator++() { }

};

class Y { };

// non-member prefix ++y
void operator++(Y&) { }
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int main() {
X x;
Y y;

// calls x.operator++()
++x;

// explicit call, like ++x
x.operator++();

// calls operator++(y)
++y;

// explicit call, like ++y
operator++(y);

}

The postfix increment operator ++ can be overloaded for a class type by declaring a
nonmember function operator operator++() with two arguments, the first having
class type and the second having type int. Alternatively, you can declare a member
function operator operator++() with one argument having type int. The compiler
uses the int argument to distinguish between the prefix and postfix increment
operators. For implicit calls, the default value is zero.

For example:
class X {
public:

// member postfix x++
void operator++(int) { };

};

class Y { };

// nonmember postfix y++
void operator++(Y&, int) { };

int main() {
X x;
Y y;

// calls x.operator++(0)
// default argument of zero is supplied by compiler
x++;
// explicit call to member postfix x++
x.operator++(0);

// calls operator++(y, 0)
y++;

// explicit call to non-member postfix y++
operator++(y, 0);

}

The prefix and postfix decrement operators follow the same rules as their increment
counterparts.

v “Member Functions” on page 295
v “Increment ++” on page 114
v “Decrement −−” on page 114
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Overload Resolution

The process of selecting the most appropriate overloaded function or
operator is called overload resolution.

Suppose that f is an overloaded function name. When you call the overloaded
function f(), the compiler creates a set of candidate functions. This set of functions
includes all of the functions named f that can be accessed from the point where
you called f(). The compiler may include as a candidate function an alternative
representation of one of those accessible functions named f to facilitate overload
resolution.

After creating a set of candidate functions, the compiler creates a set of viable
functions. This set of functions is a subset of the candidate functions. The number
of parameters of each viable function agrees with the number of arguments you
used to call f().

The compiler chooses the best viable function, the function declaration that the C++
run time will use when you call f(), from the set of viable functions. The compiler
does this by implicit conversion sequences. An implicit conversion sequence is the
sequence of conversions required to convert an argument in a function call to the
type of the corresponding parameter in a function declaration. The implicit
conversion sequences are ranked; some implicit conversion sequences are better
than others. The compiler tries to find one viable function in which all of its
parameters have either better or equal-ranked implicit conversion sequences than
all of the other viable functions. The viable function that the compiler finds is the
best viable function. The compiler will not allow a program in which the compiler
was able to find more than one best viable function.

You can override an exact match by using an explicit cast. In the following example,
the second call to f() matches with f(void*):
void f(int) { };
void f(void*) { };

int main() {
f(0xaabb); // matches f(int);
f((void*) 0xaabb); // matches f(void*)

}

v “Implicit Conversion Sequences”

Implicit Conversion Sequences

An implicit conversion sequence is the sequence of conversions required to
convert an argument in a function call to the type of the corresponding parameter in
a function declaration.

The compiler will try to determine an implicit conversion sequence for each
argument. It will then categorize each implicit conversion sequence in one of three
categories and rank them depending on the category. The compiler will not allow
any program in which it cannot find an implicit conversion sequence for an
argument.

The following are the three categories of conversion sequences in order from best
to worst:
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v Standard conversion sequences
v User-defined conversion sequences
v Ellipsis conversion sequences

Note: Two standard conversion sequences or two user-defined conversion
sequences may have different ranks.

Standard Conversion Sequences

Standard conversion sequences are categorized in one of three ranks. The ranks
are listed in order from best to worst:
v Exact match: This rank includes the following conversions:

– Identity conversions
– Lvalue-to-rvalue conversions
– Array-to-pointer conversions
– Qualification conversions

v Promotion: This rank includes integral and floating point promotions.
v Conversion: This rank includes the following conversions:

– Integral and floating-point conversions
– Floating-integral conversions
– Pointer conversions
– Pointer-to-member conversions
– Boolean conversions

The compiler ranks a standard conversion sequence by its worst-ranked standard
conversion. For example, if a standard conversion sequence has a floating-point
conversion, then that sequence has conversion rank.

User-Defined Conversion Sequences

A user-defined conversion sequence consists of the following:

v A standard conversion sequence

v A user-defined conversion

v A second standard conversion sequence

A user-defined conversion sequence A is better than a user-defined conversion
sequence B if the both have the same user-defined conversion function or
constructor, and the second standard conversion sequence of A is better than the
second standard conversion sequence of B.

Ellipsis Conversion Sequences

An ellipsis conversion sequence occurs when the compiler matches an argument in
a function call with a corresponding ellipsis parameter.

v “Lvalue-to-Rvalue Conversions” on page 145
v “Pointer Conversions” on page 146
v “Qualification Conversions” on page 148
v “Integral Conversions” on page 145
v “Floating-Point Conversions” on page 146
v “Boolean Conversions” on page 145
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Resolving Addresses of Overloaded Functions

If you use an overloaded function name f without any arguments, that name
can refer to a function, a pointer to a function, a pointer to member function, or a
specialization of a function template. Because you did not provide any arguments,
the compiler cannot perform overload resolution the same way it would for a
function call or for the use of an operator. Instead, the compiler will try to choose
the best viable function that matches the type of one of the following expressions,
depending on where you have used f:
v An object or reference you are initializing
v The left side of an assignment
v A parameter of a function or a user-defined operator
v The return value of a function, operator, or conversion
v An explicit type conversion

If the compiler chose a declaration of a nonmember function or a static member
function when you used f, the compiler matched the declaration with an expression
of type pointer-to-function or reference-to-function. If the compiler chose a
declaration of a nonstatic member function, the compiler matched that declaration
with an expression of type pointer-to-member function. The following example
demonstrates this:
struct X {

int f(int) { return 0; }
static int f(char) { return 0; };

}

int main() {
int (X::*a)(int) = &X::f;

// int (*b)(int) = &X::f;
int (*c)(int) = &X::f;

}

The compiler will not allow the initialization of the function pointer b. No nonmember
function or static function of type int(int) has been declared.

If f is a template function, the compiler will perform template argument deduction to
determine which template function to use. If successful, it will add that function to
the list of viable functions. If there is more than one function in this set, including a
non-template function, the compiler will eliminate all template functions from the set.
If there are only template functions in this set, the compiler will choose the most
specialized template function. The following example demonstrates this:
template<class T> int f(T) { return 0; }
template<> int f(int) { return 0; }
int f(int) { return 0; }

int main() {
int (*a)(int) = f;
a(1);

}

The function call a(1) calls int f(int).

v “Chapter 7. Functions” on page 153
v “Pointers to Functions” on page 173
v “Pointers to Members” on page 298
v “Function Templates” on page 379
v “Explicit Specialization” on page 390
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Chapter 12. Classes

A class is a mechanism for creating user-defined data types. It is similar to
the C-language structure data type. In C, a structure is composed of a set of data
members. In C++, a class type is like a C structure, except that a class is
composed of a set of data members and a set of operations that can be performed
on the class.

In C++, a class type can be declared with the keywords union, struct, or class. A
union object can hold any one of a set of named members. Structure and class
objects hold a complete set of members. Each class type represents a unique set
of class members including data members, member functions, and other type
names. The default access for members depends on the class key:
v The members of a class declared with the keyword class are private by default.

A class is inherited privately by default.
v The members of a class declared with the keyword struct are public be default.

A structure is inherited publicly by default.
v The members of a union (declared with the keyword union) are public by default.

A union cannot be used as a base class in derivation.

Once you create a class type, you can declare one or more objects of that class
type. For example:
class X
{

/* define class members here */
};
int main()
{

X xobject1; // create an object of class type X
X xobject2; // create another object of class type X

}

You may have polymorphic classes in C++. Polymorphism is the ability to use a
function name that appears in different classes (related by inheritance), without
knowing exactly the class the function belongs to at compile time.

C++ allows you to redefine standard operators and functions through the concept of
overloading. Operator overloading facilitates data abstraction by allowing you to use
classes as easily as built-in types.

v “Structures” on page 51
v “Chapter 13. Class Members and Friends” on page 293
v “Chapter 14. Inheritance” on page 315
v “Chapter 11. Overloading” on page 269
v “Virtual Functions” on page 333

Declaring Class Types

A class declaration creates a unique type class name.
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A class specifier is a type specifier used to declare a class. Once a class specifier
has been seen and its members declared, a class is considered to be defined even
if the member functions of that class are not yet defined. A class specifier has the
following form:

Syntax — Class Specifier

�� class
struct
union

class_name
: base_clause

{ }
member_list

��

The class_name is a unique identifier that becomes a reserved word within its
scope. Once a class name is declared, it hides other declarations of the same
name within the enclosing scope.

The member_list specifies the class members, both data and functions, of the class
class_name. If the member_list of a class is empty, objects of that class have a
nonzero size. You can use a class_name within the member_list of the class
specifier itself as long as the size of the class is not required.

The base_clause specifies the base class or classes from which the class
class_name inherits members. If the base_clause is not empty, the class
class_name is called a derived class.

A structure is a class declared with the class_key struct. The members and base
classes of a structure are public by default. A union is a class declared with the
class_key union. The members of a union are public by default; a union holds only
one data member at a time.

An aggregate class is a class that has no user-defined constructors, no private or
protected non-static data members, no base classes, and no virtual functions.

v “Class Member Lists” on page 293
v “Derivation” on page 317

Using Class Objects

You can use a class type to create instances or objects of that class type.
For example, you can declare a class, structure, and union with class names X, Y,
and Z respectively:
class X {

// members of class X
};

struct Y {
// members of struct Y

};

union Z {
// members of union Z

};

You can then declare objects of each of these class types. Remember that classes,
structures, and unions are all types of C++ classes.

Declaring Class Objects
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int main()
{

X xobj; // declare a class object of class type X
Y yobj; // declare a struct object of class type Y
Z zobj; // declare a union object of class type Z

}

In C++, unlike C, you do not need to precede declarations of class objects with the
keywords union, struct, and class unless the name of the class is hidden. For
example:
struct Y { /* ... */ };
class X { /* ... */ };
int main ()
{

int X; // hides the class name X
Y yobj; // valid
X xobj; // error, class name X is hidden
class X xobj; // valid

}

When you declare more than one class object in a declaration, the declarators are
treated as if declared individually. For example, if you declare two objects of class S
in a single declaration:
class S { /* ... */ };
int main()
{

S S,T; // declare two objects of class type S
}

this declaration is equivalent to:
class S { /* ... */ };
int main()
{

S S;
class S T; // keyword class is required

// since variable S hides class type S
}

but is not equivalent to:
class S { /* ... */ };
int main()
{

S S;
S T; // error, S class type is hidden

}

You can also declare references to classes, pointers to classes, and arrays of
classes. For example:
class X { /* ... */ };
struct Y { /* ... */ };
union Z { /* ... */ };
int main()
{

X xobj;
X &xref = xobj; // reference to class object of type X
Y *yptr; // pointer to struct object of type Y
Z zarray[10]; // array of 10 union objects of type Z

}

Objects of class types that are not copy restricted can be assigned, passed as
arguments to functions, and returned by functions.

Declaring Class Objects
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v “Chapter 12. Classes” on page 283
v “Structures” on page 51
v “Unions” on page 59
v “References” on page 92
v “Scope of Class Names” on page 287

Classes and Structures

The C++ class is an extension of the C-language structure. Because the
only difference between a structure and a class is that structure members have
public access by default and a class members have private access by default, you
can use the keywords class or struct to define equivalent classes.

For example, in the following code fragment, the class X is equivalent to the
structure Y:

CCNX10C
class X {

// private by default
int a;

public:

// public member function
int f() { return a = 5; };

};

struct Y {

// public by default
int f() { return a = 5; };

private:

// private data member
int a;

};

If you define a structure and then declare an object of that structure using the
keyword class, the members of the object are still public by default. In the following
example, main() has access to the members of obj_X even though obj_X has been
declared using an elaborated type specifier that uses the class key class:

CCNX10D
#include <iostream>
using namespace std;

struct X {
int a;
int b;
};

class X obj_X;

int main() {
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obj_X.a = 0;
obj_X.b = 1;
cout << "Here are a and b: " << obj_X.a << " " << obj_X.b << endl;

}

The following is the output of the above example:
Here are a and b: 0 1

v “Structures” on page 51

Scope of Class Names

A class declaration introduces the class name into the scope where it is
declared. Any class, object, function or other declaration of that name in an
enclosing scope is hidden.

If a class name is declared in the same scope as a function, enumerator, or object
with the same name, you must refer to that class using an elaborated type specifier:

Syntax — Elaborated Type Specifier

�� class identifier
struct :: nested_name_specifier
union
enum

typename nested_name_specifier identifier
:: template_name

template

��

Syntax — Nested Name Specifier

�� class_name ::
namespace_name template nested_name_specifier

nested_name_specifier

��

The following example must use an elaborated type specifier to refer to class A
because this class is hidden by the definition of the function A():
class A { };

void A (class A*) { };

int main()
{

class A* x;
A(x);

}

The declaration class A* x is an elaborated type specifier. Declaring a class with
the same name of another function, enumerator, or object as demonstrated above
is not recommended.

An elaborated type specifier can also be used in the incomplete declaration of a
class type to reserve the name for a class type within the current scope.
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v “Scope” on page 1
v “Incomplete Class Declarations”

Incomplete Class Declarations

An incomplete class declaration is a class declaration that does not define
any class members. You cannot declare any objects of the class type or refer to the
members of a class until the declaration is complete. However, an incomplete
declaration allows you to make specific references to a class prior to its definition
as long as the size of the class is not required.

For example, you can define a pointer to the structure first in the definition of the
structure second. Structure first is declared in an incomplete class declaration
prior to the definition of second, and the definition of oneptr in structure second does
not require the size of first:
struct first; // incomplete declaration of struct first

struct second // complete declaration of struct second
{

first* oneptr; // pointer to struct first refers to
// struct first prior to its complete
// declaration

first one; // error, you cannot declare an object of
// an incompletely declared class type

int x, y;
};

struct first // complete declaration of struct first
{

second two; // define an object of class type second
int z;

};

However, if you declare a class with an empty member list, it is a complete class
declaration. For example:
class X; // incomplete class declaration
class Z {}; // empty member list
class Y
{
public:

X yobj; // error, cannot create an object of an
// incomplete class type

Z zobj; // valid
};

v “Class Member Lists” on page 293

Nested Classes

A nested class is declared within the scope of another class. The name of a
nested class is local to its enclosing class. Unless you use explicit pointers,
references, or object names, declarations in a nested class can only use visible
constructs, including type names, static members, and enumerators from the
enclosing class and global variables.

Scope of Class Names
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Member functions of a nested class follow regular access rules and have no special
access privileges to members of their enclosing classes. Member functions of the
enclosing class have no special access to members of a nested class. The
following example demonstrates this:
class A {

int x;

class B { };

class C {

// The compiler cannot allow the following
// declaration because A::B is private:
// B b;

int y;
void f(A* p, int i) {

// The compiler cannot allow the following
// statement because A::x is private:
// p->x = i;

}
};

void g(C* p) {

// The compiler cannot allow the following
// statement because C::y is private:
// int z = p->y;

}
};

int main() { }

The compiler would not allow the declaration of object b because class A::B is
private. The compiler would not allow the statement p->x = i because A::x is
private. The compiler would not allow the statement int z = p->y because C::y is
private.

You can define member functions and static data members of a nested class in
namespace scope. For example, in the following code fragment, you can access
the static members x and y and member functions f() and g() of the nested class
nested by using a qualified type name. Qualified type names allow you to define a
typedef to represent a qualified class name. You can then use the typedef with the
:: (scope resolution) operator to refer to a nested class or class member, as shown
in the following example:
class outside
{
public:

class nested
{
public:

static int x;
static int y;
int f();
int g();

};
};
int outside::nested::x = 5;
int outside::nested::f() { return 0; };
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typedef outside::nested outnest; // define a typedef
int outnest::y = 10; // use typedef with ::
int outnest::g() { return 0; };

However, using a typedef to represent a nested class name hides information and
may make the code harder to understand.

You cannot use a typedef name in an elaborated type specifier. To illustrate, you
cannot use the following declaration in the above example:

class outnest obj;

A nested class may inherit from private members of its enclosing class. The
following example demonstrates this:
class A {
private:

class B { };
B *z;

class C : private B {
private:

B y;
// A::B y2;

C *x;
// A::C *x2;

};
};

The nested class A::C inherits from A::B. The compiler does not allow the
declarations A::B y2 and A::C *x2 because both A::B and A::C are private.

v “Scope of Class Names” on page 287
v “Member Functions” on page 295
v “Member Access” on page 308
v “Static Members” on page 303
v “typedef” on page 43
v “C++ Scope Resolution Operator ::” on page 102

Local Classes

A local class is declared within a function definition. Declarations in a local
class can only use type names, enumerations, static variables from the enclosing
scope, as well as external variables and functions.

For example:
int x; // global variable
void f() // function definition
{

static int y; // static variable y can be used by
// local class

int x; // auto variable x cannot be used by
// local class

extern int g(); // extern function g can be used by
// local class

class local // local class
{

int g() { return x; } // error, local variable x
// cannot be used by g

Scope of Class Names
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int h() { return y; } // valid,static variable y
int k() { return ::x; } // valid, global x
int l() { return g(); } // valid, extern function g

};
}

int main()
{

local* z; // error: the class local is not visible
// ...}

Member functions of a local class have to be defined within their class definition. As
a result, member functions of a local class are inline functions. Like all member
functions, those defined within the scope of a local class do not need the keyword
inline.

A local class cannot have static data members. In the following example, an attempt
to define a static member of a local class causes an error:
void f()
{

class local
{

int f(); // error, local class has noninline
// member function

int g() {return 0;} // valid, inline member function
static int a; // error, static is not allowed for

// local class
int b; // valid, nonstatic variable

};
}
// . . .

An enclosing function has no special access to members of the local class.

v “Member Functions” on page 295
v “Inline Functions” on page 174

Local Type Names

Local type names follow the same scope rules as other names. Type names
defined within a class declaration have class scope and cannot be used outside
their class without qualification.

If you use a class name, typedef name, or a constant name that is used in a type
name, in a class declaration, you cannot redefine that name after it is used in the
class declaration.

For example:
int main ()
{

typedef double db;
struct st
{

db x;
typedef int db; // error
db y;

};
}

Scope of Class Names

Chapter 12. Classes 291



The following declarations are valid:
typedef float T;
class s {

typedef int T;
void f(const T);

};

Here, function f() takes an argument of type s::T. However, the following
declarations, where the order of the members of s has been reversed, cause an
error:
typedef float T;
class s {

void f(const T);
typedef int T;

};

In a class declaration, you cannot redefine a name that is not a class name, or a
typedef name to a class name or typedef name once you have used that name in
the class declaration.

v “Scope” on page 1
v “Global Scope” on page 2
v “typedef” on page 43
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Chapter 13. Class Members and Friends

The concept of information hiding comprises a public class interface and private
implementation. It is the mechanism for limiting direct access to the internal
representation of a class type by functions in a program. This section discusses the
declaration of class members with respect to the information hiding mechanism and
how a class can grant functions access to its nonpublic members by the use of the
friend mechanism.

Class Member Lists

An optional member list declares sub-objects called class members. Class
members can be data, functions, nested types, and enumerators.

Syntax — Class Member List

�� � member_declaration ;
= 0
= constant_expression

member_definition
access_specifier :

��

The member list follows the class name and is placed between braces. The
following applies to member lists, and members of member lists:
v A member_declaration or a member_definition may be a declaration or definition

of a data member, member function, nested type, or enumeration. (The
enumerators of a enumeration defined in a class member list are also members
of the class.)

v A member list is the only place where you can declare class members.
v Friend declarations are not class members but must appear in member lists.
v The member list in a class definition declares all the members of a class; you

cannot add members elsewhere.
v You cannot declare a member twice in a member list.
v You may declare a data member or member function as static but not auto,

extern, or register.
v You may declare a nested class, a member class template, or a member

function, and then define it later outside the class.
v You must define static data members later outside the class.
v Nonstatic members that are class objects must be objects of previously defined

classes; a class A cannot contain an object of class A, but it can contain a pointer
or reference to an object of class A.

v You must specify all dimensions of a nonstatic array member.

A constant initializer (= constant_expression) may only appear in a class member of
integral or enumeration type that has been declared as static.

A pure specifier (= 0) indicates that a function has no definition. It is only used with
member functions declared as virtual and replaces the function definition of a
member function in the member list.

An access specifier is one of public, private, or protected.
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A member declaration declares a class member for the class containing the
declaration.

The order of allocation of nonstatic class members separated by an
access_specifier is implementation dependent. The VisualAge C++ compiler
allocates class members in the order that they are declared.

Suppose A is a name of a class. The following class members of A must have a
name different from A:
v All data members
v All type members
v All enumerators of enumerated type members
v All members of all anonymous union members

v “Chapter 3. Declarations” on page 33
v “Declaring Class Types” on page 283
v “Member Access” on page 308
v “Virtual Functions” on page 333
v “Static Members” on page 303

Data Members

Data members include members that are declared with any of the
fundamental types, as well as other types, including pointer, reference, array types,
bit fields, and user-defined types. You can declare a data member the same way as
a variable, except that explicit initializers are not allowed inside the class definition.
However, a const static data member of integral or enumeration type may have an
explicit initializer.

If an array is declared as a nonstatic class member, you must specify all of the
dimensions of the array.

A class can have members that are of a class type or are pointers or references to
a class type. Members that are of a class type must be of a class type that is
previously declared. An incomplete class type can be used in a member declaration
as long as the size of the class is not needed. For example, a member can be
declared that is a pointer to an incomplete class type.

A class X cannot have a member that is of type X, but it can contain pointers to X,
references to X, and static objects of X. Member functions of X can take arguments
of type X and have a return type of X. For example:
class X
{

X();
X *xptr;
X &xref;
static X xcount;
X xfunc(X);

};

v “Pointers” on page 81
v “References” on page 92
v “Arrays” on page 86
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v “Pointers” on page 81
v “References” on page 92
v “Incomplete Class Declarations” on page 288

Member Functions

Member functions are operators and functions that are declared as
members of a class. Member functions do not include operators and functions
declared with the friend specifier. These are called friends of a class. You can
declare a member function as static; this is called a static member function. A
member function that is not declared as static is called a nonstatic member
function.

Suppose that you create an object named x of class A, and class A has a nonstatic
member function f(). If you call the function x.f(), the keyword this in the body of
f() is the address of x.

The definition of a member function is within the scope of its enclosing class. The
body of a member function is analyzed after the class declaration so that members
of that class can be used in the member function body, even if the member function
definition appears before the declaration of that member in the class member list.
When the function add() is called in the following example, the data variables a, b,
and c can be used in the body of add().
class x
{
public:

int add() // inline member function add
{return a+b+c;};

private:
int a,b,c;

};

Inline Member Functions

You may either define a member function inside its class definition, or you may it
outside if you have already declared (but not defined) the member function in the
class definition.

A member function that is defined inside its class member list is called an inline
member function. Member functions containing a few lines of code are usually
declared inline. In the above example, add() is an inline member function. If you
define a member function outside of its class definition, it must appear in a
namespace scope enclosing the class definition. You must also qualify the member
function name using the scope resolution (::) operator.

An equivalent way to declare an inline member function is to either declare it in the
class with the inline keyword (and define the function outside of its class) or to
define it outside of the class declaration using the inline keyword.

In the following example, member function Y::f() is an inline member function:
struct Y {
private:

char a*;
public:

char* f() { return a; }
};

Data Members
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The following example is equivalent to the previous example; Y::f() is an inline
member function:
struct Y {
private:

char a*;
public:

char* f();
};

inline char* Z::f() { return a; }

Inline member functions have internal linkage. Noninline member functions have
external linkage.

Member Functions of Local Classes

Member functions of a local class have to be defined within their class definition. As
a result, member functions of a local class are inline functions. Like all member
functions, those defined within the scope of a local class do not need the keyword
inline.

v “Friends” on page 310
v “Static Member Functions” on page 306
v “Chapter 7. Functions” on page 153
v “Inline Functions” on page 174
v “Local Classes” on page 290

const and volatile Member Functions

A member function declared with the const qualifier can be called for
constant and nonconstant objects. A nonconstant member function can only be
called for a nonconstant object. Similarly, a member function declared with the
volatile qualifier can be called for volatile and nonvolatile objects. A nonvolatile
member function can only be called for a nonvolatile object.

v “volatile and const Qualifiers” on page 69

Virtual Member Functions

Virtual member functions are declared with the keyword virtual. They allow
dynamic binding of member functions. Because all virtual functions must be
member functions, virtual member functions are simply called virtual functions.

If the definition of a virtual function is replaced by a pure specifier in the declaration
of the function, the function is said to be declared pure. A class that has at least
one pure virtual function is called an abstract class.

v “Virtual Functions” on page 333
v “Abstract Classes” on page 339
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Special Member Functions

Special member functions are used to create, destroy, initialize, convert, and
copy class objects. These include the following:
v Constructors
v Destructors
v Conversion constructors
v Conversion functions
v Copy constructors

v “Constructors” on page 342
v “Destructors” on page 350
v “Conversion by Constructor” on page 360
v “Conversion Functions” on page 361
v “Copy Constructors” on page 362

Member Scope

Member functions and static members can be defined outside their class
declaration if they have already been declared, but not defined, in the class
member list. Nonstatic data members are defined when an object of their class is
created. The declaration of a static data member is not a definition. The declaration
of a member function is a definition if the body of the function is also given.

Whenever the definition of a class member appears outside of the class declaration,
the member name must be qualified by the class name using the :: (scope
resolution) operator.

The following example defines a member function outside of its class declaration.

CCNX11A
#include <iostream>
using namespace std;

struct X {
int a, b ;

// member function declaration only
int add();

};

// global variable
int a = 10;

// define member function outside its class declaration
int X::add() { return a + b; }

int main() {
int answer;
X xobject;
xobject.a = 1;
xobject.b = 2;
answer = xobject.add();
cout << xobject.a << " + " << xobject.b << " = " << answer << endl;

}

The output for this example is: 1 + 2 = 3

Member Functions
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All member functions are in class scope even if they are defined outside their class
declaration. In the above example, the member function add() returns the data
member a, not the global variable a.

The name of a class member is local to its class. Unless you use one of the class
access operators, . (dot), or -> (arrow), or :: (scope resolution) operator, you can
only use a class member in a member function of its class and in nested classes.
You can only use types, enumerations and static members in a nested class without
qualification with the :: operator.

The order of search for a name in a member function body is:
1. Within the member function body itself
2. Within all the enclosing classes, including inherited members of those classes
3. Within the lexical scope of the body declaration

The search of the enclosing classes, including inherited members, is demonstrated
in the following example:
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class Z : A {

class Y : B {
class X : C { int f(); /* ... */ };

};
};
int Z::Y::X f()
{

char j;
return 0;

}

In this example, the search for the name j in the definition of the function f follows
this order:
1. In the body of the function f
2. In X and in its base class C
3. In Y and in its base class B
4. In Z and in its base class A
5. In the lexical scope of the body of f. In this case, this is global scope.

Note that when the containing classes are being searched, only the definitions of
the containing classes and their base classes are searched. The scope containing
the base class definitions (global scope, in this example) is not searched.

v “Class Member Lists” on page 293
v “C++ Scope Resolution Operator ::” on page 102
v “Class Scope” on page 3

Pointers to Members

Pointers to members allow you to refer to nonstatic members of class
objects. You cannot use a pointer to member to point to a static class member
because the address of a static member is not associated with any particular object.
To point to a static class member, you must use a normal pointer.

Member Scope
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You can use pointers to member functions in the same manner as pointers to
functions. You can compare pointers to member functions, assign values to them,
and use them to call member functions. Note that a member function does not have
the same type as a nonmember function that has the same number and type of
arguments and the same return type.

Pointers to members can be declared and used as shown in the following example:
#include <iostream>
using namespace std;

class X {
public:

int a;
void f(int b) {

cout << "The value of b is "<< b << endl;
}

};

int main() {

// declare pointer to data member
int X::*ptiptr = &X::a;

// declare a pointer to member function
void (X::* ptfptr) (int) = &X::f;

// create an object of class type X
X xobject;

// initialize data member
xobject.*ptiptr = 10;

cout << "The value of a is " << xobject.*ptiptr << endl;

// call member function
(xobject.*ptfptr) (20);

}

The output for this example is:
The value of a is 10
The value of b is 20

To reduce complex syntax, you can declare a typedef to be a pointer to a member.
A pointer to a member can be declared and used as shown in the following code
fragment:
typedef int X::*my_pointer_to_member;
typedef void (X::*my_pointer_to_function) (int);

int main() {
my_pointer_to_member ptiptr = &X::a;
my_pointer_to_function ptfptr = &X::f;
X xobject;
xobject.*ptiptr = 10;
cout << "The value of a is " << xobject.*ptiptr << endl;
(xobject.*ptfptr) (20);

}

The pointer to member operators .* and ->* are used to bind a pointer to a
member of a specific class object. Because the precedence of () (function call
operator) is higher than .* and ->*, you must use parentheses to call the function
pointed to by ptf.

Pointers to Members
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For more information, see “C++ Pointer to Member Operators .* −>*” on page 133.

v “Static Members” on page 303
v “typedef” on page 43
v “C++ Pointer to Member Operators .* −>*” on page 133

The this Pointer

The keyword this identifies a special type of pointer. Suppose that you
create an object named x of class A, and class A has a nonstatic member function
f(). If you call the function x.f(), the keyword this in the body of f() is the
address of x. You cannot declare the this pointer or make assignments to it.

A static member function does not have a this pointer.

The type of the this pointer for a member function of a class type X, is X* const. If
the member function is declared with the const qualifier, the type of the this pointer
for that member function for class X, is const X* const. If the member function is
declared with the volatile qualifier, the type of the this pointer for that member
function for class X is volatile X* const. For example, the compiler will not allow
the following:
struct A {

int a;
int f() const { return a++; }

};

The compiler will not allow the statement a++ in the body of function f(). In the
function f(), the this pointer is of type A* const. The function f() is trying to
modify part of the object to which this points.

The this pointer is passed as a hidden argument to all nonstatic member function
calls and is available as a local variable within the body of all nonstatic functions.

For example, you can refer to the particular class object that a member function is
called for by using the this pointer in the body of the member function. The
following code example produces the output a = 5:

CCNX11C
#include <iostream>
using namespace std;

struct X {
private:

int a;
public:

void Set_a(int a) {

// The 'this' pointer is used to retrieve 'xobj.a'
// hidden by the automatic variable 'a'
this->a = a;

}
void Print_a() { cout << "a = " << a << endl; }

};

int main() {
X xobj;

Pointers to Members
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int a = 5;
xobj.Set_a(a);
xobj.Print_a();

}

In the member function Set_a(), the statment this->a = a uses the this pointer to
retrieve xobj.a hidden by the automatic variable a.

Unless a class member name is hidden, using the class member name is
equivalent to using the class member name with the this pointer and the class
member access operator (->).

The example in the first column of the following table shows code that uses class
members without the this pointer. The code in the second column uses the variable
THIS to simulate the first column’s hidden use of the this pointer:

Code without using this pointer Equivalent code, the THIS variable simulating
the hidden use of the this pointer

The this Pointer
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#include <string>
#include <iostream>
using namespace std;

struct X {
private:

int len;
char *ptr;

public:
int GetLen() {

return len;
}
char * GetPtr() {

return ptr;
}
X& Set(char *);
X& Cat(char *);
X& Copy(X&);
void Print();

};

X& X::Set(char *pc) {
len = strlen(pc);
ptr = new char[len];
strcpy(ptr, pc);
return *this;

}

X& X::Cat(char *pc) {
len += strlen(pc);
strcat(ptr,pc);
return *this;

}

X& X::Copy(X& x) {
Set(x.GetPtr());
return *this;

}

void X::Print() {
cout << ptr << endl;

}

int main() {
X xobj1;
xobj1.Set("abcd")

.Cat("efgh");

xobj1.Print();
X xobj2;
xobj2.Copy(xobj1)

.Cat("ijkl");

xobj2.Print();
}

#include <string>
#include <iostream>
using namespace std;

struct X {
private:

int len;
char *ptr;

public:
int GetLen (X* const THIS) {

return THIS->len;
}
char * GetPtr (X* const THIS) {

return THIS->ptr;
}
X& Set(X* const, char *);
X& Cat(X* const, char *);
X& Copy(X* const, X&);
void Print(X* const);

};

X& X::Set(X* const THIS, char *pc) {
THIS->len = strlen(pc);
THIS->ptr = new char[THIS->len];
strcpy(THIS->ptr, pc);
return *THIS;

}

X& X::Cat(X* const THIS, char *pc) {
THIS->len += strlen(pc);
strcat(THIS->ptr, pc);
return *THIS;

}

X& X::Copy(X* const THIS, X& x) {
THIS->Set(THIS, x.GetPtr(&x));
return *THIS;

}

void X::Print(X* const THIS) {
cout << THIS->ptr << endl;

}

int main() {
X xobj1;
xobj1.Set(&xobj1 , "abcd")

.Cat(&xobj1 , "efgh");

xobj1.Print(&xobj1);
X xobj2;
xobj2.Copy(&xobj2 , xobj1)

.Cat(&xobj2 , "ijkl");

xobj2.Print(&xobj2);
}

Both examples produces the following output:
abcdefgh
abcdefghijkl

v “volatile and const Qualifiers” on page 69
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Static Members

Class members can be declared using the storage-class specifier static in
the class member list. Only one copy of the static member is shared by all objects
of a class in a program. When you declare an object of a class having a static
member, the static member is not part of the class object.

A typical use of static members is for recording data common to all objects of a
class. For example, you can use a static data member as a counter to store the
number of objects of a particular class type that are created. Each time a new
object is created, this static data member can be incremented to keep track of the
total number of objects.

You access a static member by qualifying the class name using the :: (scope
resolution) operator. In the following example, you can refer to the static member
f() of class type X as X::f() even if no object of type X is ever declared:
struct X {

static int f();
};

int main() {
X::f();

}

For more information on the storage-class specifier static, see “static Storage Class
Specifier” on page 42

v “static Storage Class Specifier” on page 42
v “Class Member Lists” on page 293

Using the Class Access Operators with Static Members

You do not have to use the class member access syntax to refer to a static
member; to access a static member s of class X, you could use the expression
X::s. The following example demonstrates accessing a static member:
#include <iostream>
using namespace std;

struct A {
static void f() { cout << "In static function A::f()" << endl; }

};

int main() {

// no object required for static member
A::f();

A a;
A* ap = &a;
a.f();
ap->f();

}

The three statements A::f(), a.f(), and ap->f() all call the same static member
function A::f().

Static Members
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You can directly refer to a static member in the same scope of its class, or in the
scope of a class derived from the static member’s class. The following example
demonstrates the latter case (directly referring to a static member in the scope of a
class derived from the static member’s class):
#include <iostream>
using namespace std;

int g() {
cout << "In function g()" << endl;
return 0;

}

class X {
public:

static int g() {
cout << "In static member function X::g()" << endl;
return 1;

}
};

class Y: public X {
public:

static int i;
};

int Y::i = g();

int main() { }

The following is the output of the above code:
In static member function X::g()

The initialization int Y::i = g() calls X::g(), not the function g() declared in the
global namespace.

A static member can be referred to independently of any association with a class
object because there is only one static member shared by all objects of a class. A
static member will exist even if no objects of its class have been declared.

v “static Storage Class Specifier” on page 42
v “C++ Scope Resolution Operator ::” on page 102
v “Dot Operator .” on page 107
v “Arrow Operator −>” on page 107

Static Data Members

Only one copy of a static data member of a class exists; it is shared with all
objects of that class.

Static data members of a class in namespace scope have external linkage. Static
data members follow the usual class access rules, except that they can be
initialized in file scope. Static data members and their initializers can access other
static private and protected members of their class. The initializer for a static data
member is in the scope of the class declaring the member.

A static data member can be of any type except for void or void qualified with
const or volatile.

Static Members
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The declaration of a static data member in the member list of a class is not a
definition. The definition of a static data member is equivalent to an external
variable definition. You must define the static member outside of the class
declaration in namespace scope.

For example:
class X
{
public:

static int i;
};
int X::i = 0; // definition outside class declaration

Once you define a static data member, it exists even though no objects of the static
data member’s class exist. In the above example, no objects of class X exist even
though the static data member X::i has been defined.

The following example shows how you can initialize static members using other
static members, even though these members are private:
class C {

static int i;
static int j;
static int k;
static int l;
static int m;
static int n;
static int p;
static int q;
static int r;
static int s;
static int f() { return 0; }
int a;

public:
C() { a = 0; }
};

C c;
int C::i = C::f(); // initialize with static member function
int C::j = C::i; // initialize with another static data member
int C::k = c.f(); // initialize with member function from an object
int C::l = c.j; // initialize with data member from an object
int C::s = c.a; // initialize with nonstatic data member
int C::r = 1; // initialize with a constant value

class Y : private C {} y;

int C::m = Y::f();
int C::n = Y::r;
int C::p = y.r; // error
int C::q = y.f(); // error

The initializations of C::p and C::x cause errors because y is an object of a class
that is derived privately from C, and its members are not accessible to members of
C.

If a static data member is of const integral or const enumeration type, you may
specify a constant initializer in the static data member’s declaration. This constant
initializer must be an integral constant expression. Note that the constant initializer
is not a definition. You still need to define the static member in an enclosing
namespace is still required. The following example demonstrates this:
#include <iostream>
using namespace std;

Static Members
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struct X {
static const int a = 76;

};

const int X::a;

int main() {
cout << X::a << endl;

}

The tokens = 76 at the end of the declaration of static data member a is a constant
initializer.

You can only have one definition of a static member in a program. Unnamed
classes and classes contained within unnamed classes cannot have static data
members.

You cannot declare a static data member as mutable.

Local classes cannot have static data members.

v “External Linkage” on page 6
v “Member Access” on page 308
v “Local Classes” on page 290

Static Member Functions

You cannot have static and nonstatic member functions with the same
names and the same number and type of arguments.

Like static data members, you may access a static member function f() of a class
A without using an object of class A.

A static member function does not have a this pointer. The following example
demonstrates this:
#include <iostream>
using namespace std;

struct X {
private:

int i;
static int si;

public:
void set_i(int arg) { i = arg; }
static void set_si(int arg) { si = arg; }

void print_i() {
cout << "Value of i = " << i << endl;
cout << "Again, value of i = " << this->i << endl;

}

static void print_si() {
cout << "Value of si = " << si << endl;

// cout << "Again, value of si = " << this->si << endl;
}

};

int X::si = 77; // Initialize static data member

Static Members
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int main() {
X xobj;
xobj.set_i(11);
xobj.print_i();

// static data members and functions belong to the class and
// can be accessed without using an object of class X
X::print_si();
X::set_si(22);
X::print_si();

}

The following is the output of the above example:
Value of i = 11
Again, value of i = 11
Value of si = 77
Value of si = 22

The compiler would not allow the member access operation this->si in function
A::print_si() because this member function has been declared as static, and
therefore does not have a this pointer.

You can call a static member function using the this pointer of a nonstatic member
function. In the following example, the nonstatic member function printall() calls
the static member function f() using the this pointer:

CCNX11H
#include <iostream>
using namespace std;

class C {
static void f() {

cout << "Here is i: " << i << endl;
}
static int i;
int j;

public:
C(int firstj): j(firstj) { }
void printall();

};

void C::printall() {
cout << "Here is j: " << this->j << endl;
this->f();

}

int C::i = 3;

int main() {
C obj_C(0);
obj_C.printall();

}

The following is the output of the above example:
Here is j: 0
Here is i: 3

A static member function cannot be declared with the keywords virtual, const,
volatile, or const volatile.
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A static member function can access only the names of static members,
enumerators, and nested types of the class in which it is declared. Suppose a static
member function f() is a member of class X. The static member function f()
cannot access the nonstatic members X or the nonstatic members of a base class
of X.

v “The this Pointer” on page 300

Member Access

Member access determines if a class member is accessible in an
expression or declaration. Suppose x is a member of class A. Class member x can
be one of the following:
v public: x can be used anywhere without the access restrictions defined by

private or protected.
v private: x can be used only by the members and friends of class A.
v protected: x can be used only by the members and friends of class A, and the

members and friends of classes derived from class A.

Members of classes declared with the keyword class are private by default.
Members of classes declared with the keyword struct or union are public by
default.

To control the access of a class member, you use one of the access specifiers
public, private, or protected as a label in a class member list. The following
example demonstrates these access specifiers:
struct A {

friend class C;
private:

int a;
public:

int b;
protected:

int c;
};

struct B : A {
void f() {

// a = 1;
b = 2;
c = 3;

}
};

struct C {
void f(A x) {

x.a = 4;
x.b = 5;
x.c = 6;

}
};

int main() {
A y;

// y.a = 7;
y.b = 8;

// y.c = 9;

B z;

Static Members
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// z.a = 10;
z.b = 11;

// z.c = 12;
}

The following table lists the access of data members A::a A::b, and A::c in various
scopes of the above example:

Scope A::a A::b A::c

function B::f() No access. Member
A::a is private.

Access. Member A::b
is public.

Access. Class B
inherits from A.

function C::f() Access. Class C is a
friend of A.

Access. Member A::b
is public.

Access. Class C is a
friend of A.

object y in

main()

No access. Member
y.a is private.

Access. Member y.a
is public.

No access. Member
y.c is protected.

object z in main() No access. Member
z.a is pivate.

Access. Member z.a
is public.

No access. Member
z.c is protected.

An access specifier specifies the accessibility of members that follow it until the
next access specifier or until the end of the class definition. You can use any
number of access specifiers in any order. If you later define a class member within
its class definition, its access specification must be the same as its declaration. The
following example demonstrates this:
class A {

class B;
public:

class B { };
};

The compiler will not allow the definition of class B because this class has already
been declared as private.

A class member has the same access control regardless whether it has been
defined within its class or outside its class.

Access control applies to names. In particular, if you add access control to a
typedef name, it affects only the typedef name. The following example
demonstrates this:
class A {

class B { };
public:

typedef B C;
};

int main() {
A::C x;

// A::B y;
}

The compiler will allow the declaration A::C x because the typedef name A::C is
public. The compiler would not allow the declaration A::B y because A::B is private.

Note that accessibility and visibility are independent. Visibility is based on the
scoping rules of C++. A class member can be visible and inaccessible at the same
time.

Member Access
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v “Scope” on page 1
v “Class Member Lists” on page 293
v “Inherited Member Access” on page 320

Friends

A friend of a class X is a function or class that is not a member of X, but is
granted the same access to X as the members of X. Functions declared with the
friend specifier in a class member list are called friend functions of that class.
Classes declared with the friend specifier in the member list of another class are
called friend classes of that class.

A class Y must be defined before any member of Y can be declared a friend of
another class.

In the following example, the friend function print is a member of class Y and
accesses the private data members a and b of class X.

CCNX11I
#include <iostream>
using namespace std;

class X;

class Y {
public:

void print(X& x);
};

class X {
int a, b;
friend void Y::print(X& x);

public:
X() : a(1), b(2) { }

};

void Y::print(X& x) {
cout << "a is " << x.a << endl;
cout << "b is " << x.b << endl;

}

int main() {
X xobj;
Y yobj;
yobj.print(xobj);

}

The following is the output of the above example:
a is 1
b is 2

You can declare an entire class as a friend. Suppose class F is a friend of class A.
This means that every member function and static data member definition of class F
has access to class A.

In the following example, the friend class F has a member function print that
accesses the private data members a and b of class X and performs the same task
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310 C/C++ Language Reference

|



as the friend function print in the above example. Any other members declared in
class F also have access to all members of class X:

CCNX11J
#include <iostream>
using namespace std;

class X {
int a, b;
friend class F;

public:
X() : a(1), b(2) { }

};

class F {
public:

void print(X& x) {
cout << "a is " << x.a << endl;
cout << "b is " << x.b << endl;

}
};

int main() {
X xobj;
F fobj;
fobj.print(xobj);

}

The following is the output of the above example:
a is 1
b is 2

You must use an elaborated type specifier when you declare a class as a friend.
The following example demonstrates this:
class F;
class G;
class X {

friend class F;
friend G;

};

The VisualAge C++ compiler will warn you that the friend declaration of G
must be an elaborated class name.

You cannot define a class in a friend declaration. For example, the compiler will not
allow the following:
class F;
class X {

friend class F { };
};

However, you can define a function in a friend declaration. The class must be a
non-local class, function, the function name must be unqualified, and the function
has namespace scope. The following example demonstrates this:
class A {

void g();
};

void z() {
class B {

// friend void f() { };

Friends
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};
}

class C {
// friend void A::g() { }

friend void h() { }
};

The compiler would not allow the function definition of f() or g(). The compiler will
allow the definition of h().

You cannot declare a friend with a storage class specifier.

v “Member Access” on page 308

Friend Scope

The name of a friend function or class first introduced in a friend declaration
is not in the scope of the class granting friendship (also called the enclosing class)
and is not a member of the class granting friendship.

The name of a function first introduced in a friend declaration is in the scope of the
first nonclass scope that contains the enclosing class. The body of a function
provided in a friend declaration is handled in the same way as a member function
defined within a class. Processing of the definition does not start until the end of the
outermost enclosing class. In addition, unqualified names in the body of the function
definition are searched for starting from the class containing the function definition.

A class that is first declared in a friend declaration is equivalent to an extern
declaration. For example:
class B {};
class A
{

friend class B; // global class B is a friend of A
};

If the name of a friend class has been introduced before the friend declaration, the
compiler searches for a class name that matches the name of the friend class
beginning at the scope of the friend declaration. If the declaration of a nested class
is followed by the declaration of a friend class with the same name, the nested
class is a friend of the enclosing class.

The scope of a friend class name is the first nonclass enclosing scope. For
example:
class A {

class B { // arbitrary nested class definitions
friend class C;

};
};

is equivalent to:
class C;
class A {

class B { // arbitrary nested class definitions
friend class C;

};
};

Friends

312 C/C++ Language Reference



If the friend function is a member of another class, you need to use the scope
resolution operator (::). For example:
class A {
public:

int f() { }
};

class B {
friend int A::f();

};

Friends of a base class are not inherited by any classes derived from that base
class. The following example demonstrates this:
class A {

friend class B;
int a;

};

class B { };

class C : public B {
void f(A* p) {

// p->a = 2;
}

};

The compiler would not allow the statement p->a = 2 because class C is not a
friend of class A, although C inherits from a friend of A.

Friendship is not transitive. The following example demonstrates this:
class A {

friend class B;
int a;

};

class B {
friend class C;

};

class C {
void f(A* p) {

// p->a = 2;
}

};

The compiler would not allow the statement p->a = 2 because class C is not a
friend of class A, although C is a friend of a friend of A.

If you declare a friend in a local class, and the friend’s name is unqualified, the
compiler will look for the name only within the innermost enclosing nonclass scope.
You must declare a function before declaring it as a friend of a local scope. You do
not have to do so with classes. However, a declaration of a friend class will hide a
class in an enclosing scope with the same name. The following example
demonstrates this:
class X { };
void a();

void f() {
class Y { };
void b();
class A {

friend class X;
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friend class Y;
friend class Z;

// friend void a();
friend void b();

// friend void c();
};
::X moocow;

// X moocow2;
}

In the above example, the compiler will allow the following statements:
v friend class X: This statement does not declare ::X as a friend of A, but the

local class X as a friend, even though this class is not otherwise declared.
v friend class Y: Local class Y has been declared in the scope of f().
v friend class Z: This statement declares the local class Z as a friend of A even

though Z is not otherwise declared.
v friend void b(): Function b() has been declared in the scope of f().
v ::X moocow: This declaration creates an object of the nonlocal class ::X.

The compiler would not allow the following statements:
v friend void a(): This statement does not consider function a() declared in

namespace scope. Since function a() has not been declared in the scope of f(),
the compiler would not allow this statement.

v friend void c(): Since function c() has not been declared in the scope of f(),
the compiler would not allow this statement.

v X moocow2: This declaration tries to create an object of the local class X, not the
nonlocal class ::X. Since local class X has not been defined, the compiler would
not allow this statement.

v “Scope of Class Names” on page 287
v “Nested Classes” on page 288
v “Dot Operator .” on page 107
v “Derivation” on page 317
v “External Linkage” on page 6

Friend Access

A friend of a class can access the private and protected members of that
class. Normally, you can only access the private members of a class through
member functions of that class, and you can only access the protected members of
a class through member functions of a class or classes derived from that class.

Friend declarations are not affected by access specifiers.

v “Friends” on page 310
v “Member Access” on page 308
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Chapter 14. Inheritance

Inheritance is a mechanism of reusing and extending existing classes
without modifying them.

Inheritance is almost like embedding an object into a class. Suppose that you
declare an object x of class A in the class definition of B. As a result, class B will
have access to all the public data members and member functions of class A.
However, in class B, you have to access the data members and member functions
of class A through object x. The following example demonstrates this:
#include <iostream>
using namespace std;

class A {
int data;

public:
void f(int arg) { data = arg; }
int g() { return data; }

};

class B {
public:

A x;
};

int main() {
B obj;
obj.x.f(20);
cout << obj.x.g() << endl;

// cout << obj.g() << endl;
}

In the main function, object obj accesses function A::f() through its data member
B::x with the statement obj.x.f(20). Object obj accesses A::g() in a similar
manner with the statement obj.x.g(). The compiler would not allow the statement
obj.g() because g() is a member function of class A, not class B.

The inheritance mechanism lets you use a statement like obj.g() in the above
example. In order for that statement to be legal, g() must be a member function of
class B.

Inheritance lets you include the names and definitions of another class’s members
as part of a new class. The class whose members you want to include in your new
class is called a base class. Your new class is derived from the base class. You
new class will contain a subobject of the type of the base class. The following
example is the same as the previous example except it uses the inheritance
mechanism to give class B access to the members of class A:
#include <iostream>
using namespace std;

class A {
int data;

public:
void f(int arg) { data = arg; }
int g() { return data; }

};

class B : public A { };
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int main() {
B obj;
obj.f(20);
cout << obj.g() << endl;

}

Class A is a base class of class B. The names and definitions of the members of
class A are included in the definition of class B; class B inherits the members of
class A. Class B is derived from class A. Class B contains a subobject of type A.

You can also add new data members and member functions to the derived class.
You can modify the implementation of existing member functions or data by
overriding base class member functions or data in the newly derived class.

You may derive classes from other derived classes, thereby creating another level
of inheritance. The following example demonstrates this:
struct A { };
struct B : A { };
struct C : B { };

Class B is a derived class of A, but is also a base class of C. The number of levels
of inheritance is only limited by resources.

Multiple inheritance allows you to create a derived class that inherits properties from
more than one base class. Because a derived class inherits members from all its
base classes, ambiguities can result. For example, if two base classes have a
member with the same name, the derived class cannot implicitly differentiate
between the two members. Note that, when you are using multiple inheritance, the
access to names of base classes may be ambiguous.

A direct base class is a base class that appears directly as a base specifier in the
declaration of its derived class.

An indirect base class is a base class that does not appear directly in the
declaration of the derived class but is available to the derived class through one of
its base classes. For a given class, all base classes that are not direct base classes
are indirect base classes. The following example demonstrates direct and indirect
base classes:
class A {

public:
int x;

};
class B : public A {

public:
int y;

};
class C : public B { };

Class B is a direct base class of C. Class A is a direct base class of B. Class A is an
indirect base class of C. (Class C has x and y as its data members.)

Polymorphic functions are functions that can be applied to objects of more than one
type. In C++, polymorphic functions are implemented in two ways:
v Overloaded functions are statically bound at compile time.
v C++ provides virtual functions. A virtual function is a function that can be called

for a number of different user-defined types that are related through derivation.
Virtual functions are bound dynamically at run time.
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v “Multiple Inheritance” on page 327
v “Overloading Functions” on page 269
v “Virtual Functions” on page 333
v “Chapter 7. Functions” on page 153
v “Chapter 12. Classes” on page 283
v “Chapter 13. Class Members and Friends” on page 293

Derivation

Inheritance is implemented in C++ through the mechanism of derivation.
Derivation allows you to derive a class, called a derived class, from another class,
called a base class.

Syntax — Derived Class Derivation

�� derived_class : �

� �

,

qualified_class_specifier
virtual

public
private
protected

public
private virtual
protected

��

In the declaration of a derived class, you list the base classes of the derived class.
The derived class inherits its members from these base classes.

The qualified_class_specifier must be a class that has been previously declared in
a class declaration.

An access specifier is one of public, private, or protected.

The virtual keyword can be used to declare virtual base classes.

The following example shows the declaration of the derived class D and the base
classes V, B1, and B2. The class B1 is both a base class and a derived class
because it is derived from class V and is a base class for D:
class V { /* ... */ };
class B1 : virtual public V { /* ... */ };
class B2 { /* ... */ };
class D : public B1, private B2 { /* ... */ };

Classes that are declared but not defined are not allowed in base lists.

For example:
class X;

// error
class Y: public X { };
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The compiler will not allow the declaration of class Y because X has not been
defined.

When you derive a class, the derived class inherits class members of the base
class. You can refer to inherited members (base class members) as if they were
members of the derived class. For example:

CCNX14A
class Base {
public:

int a,b;
};

class Derived : public Base {
public:

int c;
};

int main() {
Derived d;
d.a = 1; // Base::a
d.b = 2; // Base::b
d.c = 3; // Derived::c

}

The derived class can also add new class members and redefine existing base
class members. In the above example, the two inherited members, a and b, of the
derived class d, in addition to the derived class member c, are assigned values. If
you redefine base class members in the derived class, you can still refer to the
base class members by using the :: (scope resolution) operator. For example:

CCNX14B
#include <iostream>
using namespace std;

class Base {
public:

char* name;
void display() {

cout << name << endl;
}

};

class Derived: public Base {
public:

char* name;
void display() {

cout << name << ", " << Base::name << endl;
}

};

int main() {
Derived d;
d.name = "Derived Class";
d.Base::name = "Base Class";

// call Derived::display()
d.display();

// call Base::display()
d.Base::display();

}
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318 C/C++ Language Reference

|

|



The following is the output of the above example:
Derived Class, Base Class
Base Class

You can manipulate a derived class object as if it were a base class object. You can
use a pointer or a reference to a derived class object in place of a pointer or
reference to its base class. For example, you can pass a pointer or reference to a
derived class object D to a function expecting a pointer or reference to the base
class of D. You do not need to use an explicit cast to achieve this; a standard
conversion is performed. You can implicitly convert a pointer to a derived class to
point to an accessible unambiguous base class. You can also implicitly convert a
reference to a derived class to a reference to a base class.

The following example demonstrates a standard conversion from a pointer to a
derived class to a pointer to a base class:

CCNX14C
#include <iostream>
using namespace std;

class Base {
public:

char* name;
void display() {

cout << name << endl;
}

};

class Derived: public Base {
public:

char* name;
void display() {

cout << name << ", " << Base::name << endl;
}

};

int main() {
Derived d;
d.name = "Derived Class";
d.Base::name = "Base Class";

Derived* dptr = &d;

// standard conversion from Derived* to Base*
Base* bptr = dptr;

// call Base::display()
bptr->display();

}

The following is the output of the above example:
Base Class

The statement Base* bptr = dptr converts a pointer of type Derived to a pointer of
type Base.

The reverse case is not allowed. You cannot implicitly convert a pointer or a
reference to a base class object to a pointer or reference to a derived class. For
example, the compiler will not allow the following code if the classes Base and Class
are defined as in the above example:

Derivation
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int main() {
Base b;
b.name = "Base class";

Derived* dptr = &b;
}

The compiler will not allow the statement Derived* dptr = &b because the
statement is trying to implicitly convert a pointer of type Base to a pointer of type
Derived.

If a member of a derived class and a member of a base class have the same
name, the base class member is hidden in the derived class. If a member of a
derived class has the same name as a base class, the base class name is hidden
in the derived class.

v “Virtual Base Classes” on page 328
v “Incomplete Class Declarations” on page 288
v “C++ Scope Resolution Operator ::” on page 102
v “Member Access” on page 308
v “References” on page 92

Inherited Member Access
This section consists of a discussion of the classes that can access a protected
nonstatic base class member and how to declare a derived class using an access
specifier.

Protected Members

A protected nonstatic base class member can be accessed by members
and friends of any classes derived from that base class by using one of the
following:
v A pointer to a directly or indirectly derived class
v A reference to a directly or indirectly derived class
v An object of a directly or indirectly derived class

If a class is derived privately from a base class, all protected base class members
become private members of the derived class.

If you reference a protected nonstatic member x of a base class A in a friend or a
member function of a derived class B, you must access x through a pointer to,
reference to, or object of a class derived from A. However, if you are accessing x to
create a pointer to member, you must qualify x with a nested name specifier that
names the derived class B. The following example demonstrates this:
class A {
public:
protected:

int i;
};

class B : public A {
friend void f(A*, B*);
void g(A*);

};
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void f(A* pa, B* pb) {
// pa->i = 1;

pb->i = 2;

// int A::* point_i = &A::i;
int A::* point_i2 = &B::i;

}

void B::g(A* pa) {
// pa->i = 1;

i = 2;

// int A::* point_i = &A::i;
int A::* point_i2 = &B::i;

}

void h(A* pa, B* pb) {
// pa->i = 1;
// pb->i = 2;
}

int main() { }

Class A contains one protected data member, an integer i. Because B derives from
A, the members of B have access to the protected member of A. Function f() is a
friend of class B:
v The compiler would not allow pa->i = 1 because pa is not a pointer to the

derived class B.
v The compiler would not allow int A::* point_i = &A::i because i has not been

qualified with the name of the derived class B.

Function g() is a member function of class B. The previous list of remarks about
which statements the compiler would and would not allow apply for g() except for
the following:
v The compiler allows i = 2 because it is equivalent to this->i = 2.

Function h() cannot access any of the protected members of A because h() is
neither a friend or a member of a derived class of A.

v “References” on page 92
v “Objects” on page 34

Access Control of Base Class Members

When you declare a derived class, an access specifier can precede each
base class in the base list of the derived class. This does not alter the access
attributes of the individual members of a base class as seen by the base class, but
allows the derived class to restrict the access control of the members of a base
class.

You can derive classes using any of the three access specifiers:
v In a public base class, public and protected members of the base class remain

public and protected members of the derived class.
v In a protected base class, public and protected members of the base class are

protected members of the derived class.
v In a private base class, public and protected members of the base class become

private members of the derived class.
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In all cases, private members of the base class remain private. Private members of
the base class cannot be used by the derived class unless friend declarations within
the base class explicitly grant access to them.

In the following example, class d is derived publicly from class b. Class b is
declared a public base class by this declaration.
class b { };
class d : public b // public derivation
{ };

You can use both a structure and a class as base classes in the base list of a
derived class declaration:
v If the derived class is declared with the keyword class, the default access

specifier in its base list specifiers is private.
v If the derived class is declared with the keyword struct, the default access

specifier in its base list specifiers is public.

In the following example, private derivation is used by default because no access
specifier is used in the base list and the derived class is declared with the keyword
class:
struct B
{ };
class D : B // private derivation
{ };

Members and friends of a class can implicitly convert a pointer to an object of that
class to a pointer to either:
v A direct private base class
v A protected base class (either direct or indirect)

v “Member Access” on page 308
v “Structures” on page 51
v “Chapter 12. Classes” on page 283
v “Chapter 13. Class Members and Friends” on page 293
v “Friends” on page 310

The using Declaration and Class Members

A using declaration in a definition of a class A allows you to introduce a
name of a data member or member function from a base class of A into the scope
of A.

You would need a using declaration in a class definition if you want to create a set
of overload a member functions from base and derived classes, or you want to
change the access of a class member.

Syntax — using Declaration

�� using nested_name_specifier unqualified_id ;
typename ::

:: unqualified_id ;

��

A using declaration in a class A may name one of the following:
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v A member of a base class of A
v A member of an anonymous union that is a member of a base class of A
v An enumerator for an enumeration type that is a member of a base class of A

The following example demonstrates this:
struct Z {

int g();
};

struct A {
void f();
enum E { e };
union { int u; };

};

struct B : A {
using A::f;
using A::e;
using A::u;

// using Z::g;
};

The compiler would not allow the using declaration using Z::g because Z is not a
base class of A.

A using declaration cannot name a template. For example, the compiler will not
allow the following:
struct A {

template<class T> void f(T);
};

struct B : A {
using A::f<int>;

};

Every instance of the name mentioned in a using declaration must be accessible.
The following example demonstrates this:
struct A {
private:

void f(int);
public:

int f();
protected:

void g();
};

struct B : A {
// using A::f;

using A::g;
};

The compiler would not allow the using declaration using A::f because void
A::f(int) is not accessible from B even though int A::f() is accessible.

v “Scope of Class Names” on page 287
v “Overloading Member Functions from Base and Derived Classes” on page 324
v “Changing the Access of a Class Member” on page 325
v “The using Declaration and Namespaces” on page 267
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Overloading Member Functions from Base and Derived Classes

A member function named f in a class A will hide all other members named
f in the base classes of A, regardless of return types or arguments. The following
example demonstrates this:
struct A {

void f() { }
};

struct B : A {
void f(int) { }

};

int main() {
B obj_B;
obj_B.f(3);

// obj_B.f();
}

The compiler would not allow the function call obj_B.f() because the declaration of
void B::f(int) has hidden A::f().

To overload, rather than hide, a function of a base class A in a derived class B, you
introduce the name of the function into the scope of B with a using declaration. The
following example is the same as the previous example except for the using
declaration using A::f:
struct A {

void f() { }
};

struct B : A {
using A::f;
void f(int) { }

};

int main() {
B obj_B;
obj_B.f(3);
obj_B.f();

}

Because of the using declaration in class B, the name f is overloaded with two
functions. The compiler will now allow the function call obj_B.f().

You can overload virtual functions in the same way. The following example
demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "void A::f()" << endl; }
virtual void f(int) { cout << "void A::f(int)" << endl; }

};

struct B : A {
using A::f;
void f(int) { cout << "void B::f(int)" << endl; }

};

int main() {
B obj_B;
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B* pb = &obj_B;
pb->f(3);
pb->f();

}

The following is the output of the above example:
void B::f(int)
void A::f()

Suppose that you introduce a function f from a base class A a derived class B with
a using declaration, and there exists a function named B::f that has the same
parameter types as A::f. Function B::f will hide, rather than conflict with, function
A::f. The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
void f() { }
void f(int) { cout << "void A::f(int)" << endl; }

};

struct B : A {
using A::f;
void f(int) { cout << "void B::f(int)" << endl; }

};

int main() {
B obj_B;
obj_B.f(3);

}

The following is the output of the above example:
void B::f(int)

v “Chapter 11. Overloading” on page 269
v “Name Hiding” on page 4
v “The using Declaration and Class Members” on page 322

Changing the Access of a Class Member

Suppose class B is a direct base class of class A. To restrict access of
class B to the members of class A, derive B from A using either the access specifiers
protected or private.

To increase the access of a member x of class A inherited from class B, use a using
declaration. You cannot restrict the access to x with a using declaration. You may
increase the access of the following members:
v A member inherited as private. (You cannot increase the access of a member

declared as private because a using declaration must have access to the
member’s name.)

v A member either inherited or declared as protected

The following example demonstrates this:
struct A {
protected:

int y;
public:

int z;
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};

struct B : private A { };

struct C : private A {
public:

using A::y;
using A::z;

};

struct D : private A {
protected:

using A::y;
using A::z;

};

struct E : D {
void f() {

y = 1;
z = 2;

}
};

struct F : A {
public:

using A::y;
private:

using A::z;
};

int main() {
B obj_B;

// obj_B.y = 3;
// obj_B.z = 4;

C obj_C;
obj_C.y = 5;
obj_C.z = 6;

D obj_D;
// obj_D.y = 7;
// obj_D.z = 8;

F obj_F;
obj_F.y = 9;
obj_F.z = 10;

}

The compiler would not allow the following assignments from the above example:
v obj_B.y = 3 and obj_B.z = 4: Members y and z have been inherited as private.
v obj_D.y = 7 and obj_D.z = 8: Members y and z have been inherited as private,

but their access have been changed to protected.

The compiler allows the following statements from the above example:
v y = 1 and z = 2 in D::f(): Members y and z have been inherited as private, but

their access have been changed to protected.
v obj_C.y = 5 and obj_C.z = 6: Members y and z have been inherited as private,

but their access have been changed to public.
v obj_F.y = 9: The access of member y has been changed from protected to

public.
v obj_F.z = 10: The access of member z is still public. The private using

declaration using A::z has no effect on the access of z.
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v “Member Access” on page 308
v “Protected Members” on page 320
v “Access Control of Base Class Members” on page 321
v “The using Declaration and Class Members” on page 322

Multiple Inheritance

You can derive a class from any number of base classes. Deriving a class
from more than one direct base class is called multiple inheritance.

In the following example, classes A, B, and C are direct base classes for the derived
class X:
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class X : public A, private B, public C { /* ... */ };

The following inheritance graph describes the inheritance relationships of the above
example. An arrow points to the direct base class of the class at the tail of the
arrow:

BA C

X

The order of derivation is relevant only to determine the order of default initialization
by constructors and cleanup by destructors.

A direct base class cannot appear in the base list of a derived class more than
once:
class B1 { /* ... */ }; // direct base class
class D : public B1, private B1 { /* ... */ }; // error

However, a derived class can inherit an indirect base class more than once, as
shown in the following example:

LL

B2 B3

D

class L { /* ... */ }; // indirect base class
class B2 : public L { /* ... */ };
class B3 : public L { /* ... */ };
class D : public B2, public B3 { /* ... */ }; // valid

In the above example, class D inherits the indirect base class L once through class
B2 and once through class B3. However, this may lead to ambiguities because two
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subobjects of class L exist, and both are accessible through class D. You can avoid
this ambiguity by referring to class L using a qualified class name. For example:
B2::L

or
B3::L.

You can also avoid this ambiguity by using the base specifier virtual to declare a
base class.

v “Virtual Base Classes”

Virtual Base Classes

Suppose you have two derived classes B and C that have a common base
class A, and you also have another class D that inherits from B and C. You can
declare the base class A as virtual to ensure that B and C share the same subobject
of A.

In the following example, an object of class D has two distinct subobjects of class L,
one through class B1 and another through class B2. You can use the keyword
virtual in front of the base class specifiers in the base lists of classes B1 and B2 to
indicate that only one subobject of type L, shared by class B1 and class B2, exists.

For example:

L

B1 B2

D

class L { /* ... */ }; // indirect base class
class B1 : virtual public L { /* ... */ };
class B2 : virtual public L { /* ... */ };
class D : public B1, public B2 { /* ... */ }; // valid

Using the keyword virtual in this example ensures that an object of class D inherits
only one subobject of class L.

A derived class can have both virtual and nonvirtual base classes. For example:

VV

B1 B3

B2

X
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class V { /* ... */ };
class B1 : virtual public V { /* ... */ };
class B2 : virtual public V { /* ... */ };
class B3 : public V { /* ... */ };
class D : public B1, public B2, public B3 { /* ... */
};

In the above example, class D has two subobjects of class V, one that is shared by
classes B1 and B2 and one through class B3.

v “Derivation” on page 317

Multiple Access

In an inheritance graph containing virtual base classes, a name that can be
reached through more than one path is accessed through the path that gives the
most access.

For example:
class L {
public:

void f();
};

class B1 : private virtual L { };

class B2 : public virtual L { };

class D : public B1, public B2 {
public:

void f() {
// L::f() is accessed through B2
// and is public
L::f();

}
};

In the above example, the function f() is accessed through class B2. Because class
B2 is inherited publicly and class B1 is inherited privately, class B2 offers more
access.

v “Member Access” on page 308
v “Protected Members” on page 320
v “Access Control of Base Class Members” on page 321

Ambiguous Base Classes

When you derive classes, ambiguities can result if base and derived classes
have members with the same names. Access to a base class member is
ambiguous if you use a name or qualified name that does not refer to a unique
function or object. The declaration of a member with an ambiguous name in a
derived class is not an error. The ambiguity is only flagged as an error if you use
the ambiguous member name.

For example, suppose that two classes named A and B both have a member named
x, and a class named C inherits from both A and B. An attempt to access x from
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class C would be ambiguous. You can resolve ambiguity by qualifying a member
with its class name using the scope resolution (::) operator.

CCNX14G
class B1 {
public:

int i;
int j;
void g(int) { }

};

class B2 {
public:

int j;
void g() { }

};

class D : public B1, public B2 {
public:

int i;
};

int main() {
D dobj;
D *dptr = &dobj;
dptr->i = 5;

// dptr->j = 10;
dptr->B1::j = 10;

// dobj.g();
dobj.B2::g();

}

The statement dptr->j = 10 is ambiguous because the name j appears both in B1
and B2. The statement dobj.g() is ambiguous because the name g appears both in
B1 and B2, even though B1::g(int) and B2::g() have different parameters.

The compiler checks for ambiguities at compile time. Because ambiguity checking
occurs before access control or type checking, ambiguities may result even if only
one of several members with the same name is accessible from the derived class.

Name Hiding

Suppose two subobjects named A and B both have a member name x. The member
name x of subobject B hides the member name x of subobject A if A is a base class
of B. The following example demonstrates this:
struct A {

int x;
};

struct B: A {
int x;

};

struct C: A, B {
void f() { x = 0; }

};

int main() {
C i;
i.f();

}
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The assignment x = 0 in function C::f() is not ambiguous because the declaration
B::x has hidden A::x. However, the compiler will warn you that deriving C from A is
redundant because you already have access to the subobject A through B.

A base class declaration can be hidden along one path in the inheritance graph and
not hidden along another path. The following example demonstrates this:
struct A { int x; };
struct B { int y; };
struct C: A, virtual B { };
struct D: A, virtual B {

int x;
int y;

};
struct E: C, D { };

int main() {
E e;

// e.x = 1;
e.y = 2;

}

The assignment e.x = 1 is ambiguous. The declaration D::x hides A::x along the
path D::A::x, but it does not hide A::x along the path D::A::x. Therefore the
variable x could refer to either D::x or A::x. The assignment e.y = 2 is not
ambiguous. The declaration D::y hides B::y along both paths D::B::y and C::B::y
because B is a virtual base class.

Ambiguity and using Declarations

Suppose you have a class named C that inherits from a class named A, and x is a
member name of A. If you use a using declaration to declare A::x in C, then x is
also a member of C; C::x does not hide A::x. Therefore using declarations cannot
resolve ambiguities due to inherited members. The following example demonstrates
this:
struct A {

int x;
};

struct B: A { };

struct C: A {
using A::x;

};

struct D: B, C {
void f() { x = 0; }

};

int main() {
D i;
i.f();

}

The compiler will not allow the assignment x = 0 in function D::f() because it is
ambiguous. The compiler can find x in two ways: as B::x or as C::x.

Unambiguous Class Members

The compiler can unambiguously find static members, nested types, and
enumerators defined in a base class A regardless of the number of subobjects of
type A an object has. The following example demonstrates this:
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struct A {
int x;
static int s;
typedef A* Pointer_A;
enum { e };

};

int A::s;

struct B: A { };

struct C: A { };

struct D: B, C {
void f() {

s = 1;
Pointer_A pa;
int i = e;

// x = 1;
}

};

int main() {
D i;
i.f();

}

The compiler allows the assignment s = 1, the declaration Pointer_A pa, and the
statement int i = e. There is only one static variable s, only one typedef
Pointer_A, and only one enumerator e. The compiler would not allow the
assignment x = 1 because x can be reached either from class B or class C.

Pointer Conversions

Conversions (either implicit or explicit) from a derived class pointer or reference to a
base class pointer or reference must refer unambiguously to the same accessible
base class object. (An accessible base class is a publicly derived base class that is
neither hidden nor ambiguous in the inheritance hierarchy.) For example:
class W { /* ... */ };
class X : public W { /* ... */ };
class Y : public W { /* ... */ };
class Z : public X, public Y { /* ... */ };
int main ()
{

Z z;
X* xptr = &z; // valid
Y* yptr = &z; // valid
W* wptr = &z; // error, ambiguous reference to class W

// X's W or Y's W ?
}

You can use virtual base classes to avoid ambiguous reference. For example:
class W { /* ... */ };
class X : public virtual W { /* ... */ };
class Y : public virtual W { /* ... */ };
class Z : public X, public Y { /* ... */ };
int main ()
{

Z z;
X* xptr = &z; // valid
Y* yptr = &z; // valid
W* wptr = &z; // valid, W is virtual therefore only one

// W subobject exists
}
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Overload Resolution

Overload resolution takes place after the compiler unambiguously finds a given
function name. The following example demonstrates this:
struct A {

int f() { return 1; }
};

struct B {
int f(int arg) { return arg; }

};

struct C: A, B {
int g() { return f(); }

};

The compiler will not allow the function call to f() in C::g() because the name f
has been declared both in A and B. The compiler detects the ambiguity error before
overload resolution can select the base match A::f().

v “C++ Scope Resolution Operator ::” on page 102
v “Virtual Base Classes” on page 328

Virtual Functions

By default, C++ matches a function call with the correct function definition at
compile time. This is called static binding. You can specify that the compiler match
a function call with the correct function definition at run time; this is called dynamic
binding. You declare a function with the keyword virtual if you want the compiler to
use dynamic binding for that specific function.

The following examples demonstrate the differences between static and dynamic
binding. The first example demonstrates static binding:
#include <iostream>
using namespace std;

struct A {
void f() { cout << "Class A" << endl; }

};

struct B: A {
void f() { cout << "Class B" << endl; }

};

void g(A& arg) {
arg.f();

}

int main() {
B x;
g(x);

}

The following is the output of the above example:
Class A

When function g() is called, function A::f() is called, although the argument refers
to an object of type B. At compile time, the compiler knows only that the argument
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of function g() will be a reference to an object derived from A; it cannot determine
whether the argument will be a reference to an object of type A or type B. However,
this can be determined at run time. The following example is the same as the
previous example, except that A::f() is declared with the virtual keyword:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "Class A" << endl; }

};

struct B: A {
void f() { cout << "Class B" << endl; }

};

void g(A& arg) {
arg.f();

}

int main() {
B x;
g(x);

}

The following is the output of the above example:
Class B

The virtual keyword indicates to the compiler that it should choose the appropriate
definition of f() not by the type of reference, but by the type of object that the
reference refers to.

Therefore, a virtual function is a member function you may redefine for other
derived classes, and can ensure that the compiler will call the redefined virtual
function for an object of the corresponding derived class, even if you call that
function with a pointer or reference to a base class of the object.

A class that declares or inherits a virtual function is called a polymorphic class

You redefine a virtual member function, like any member function, in any derived
class. Suppose you declare a virtual function named f in a class A, and you derive
directly or indirectly from A a class named B. If you declare a function named f in
class B with the same name and same parameter list as A::f, then B::f is also
virtual (regardless whether or not you declare B::f with the virtual keyword) and it
overrides A::f. However, if the parameter lists of A::f and B::f are different, A::f
and B::f are considered different, B::f does not override A::f, and B::f is not
virtual (unless you have declared it with the virtual keyword). Instead B::f hides
A::f. The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "Class A" << endl; }

};

struct B: A {
void f(int) { cout << "Class B" << endl; }

};

struct C: B {
void f() { cout << "Class C" << endl; }

};
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int main() {
B b; C c;
A* pa1 = &b;
A* pa2 = &c;

// b.f();
pa1->f();
pa2->f();

}

The following is the output of the above example:
Class A
Class C

The function B::f is not virtual. It hides A::f. Thus the compiler will not allow the
function call b.f(). The function C::f is virtual; it overrides A::f even though A::f
is not visible in C.

If you declare a base class destructor as virtual, a derived class destructor will
override that base class destructor, even though destructors are not inherited.

The return type of an overriding virtual function may differ from the return type of
the overridden virtual function. This overriding function would then be called a
covariant virtual function. Suppose that B::f overrides the virtual function A::f. The
return types of A::f and B::f may differ if all the following conditions are met:
v The function B::f returns a reference or pointer to a class of type T, and A::f

returns a pointer or a reference to an unambiguous direct or indirect base class
of T.

v The const or volatile qualification of the pointer or reference returned by B::f has
the same or less const or volatile qualification of the pointer or reference returned
by A::f.

v The return type of B::f must be complete at the point of declaration of B::f, or it
can be of type B.

The following example demonstrates this:
#include <iostream>
using namespace std;

struct A { };

class B : private A {
friend class D;
friend class F;

};

A global_A;
B global_B;

struct C {
virtual A* f() {

cout << "A* C::f()" << endl;
return &global_A;

}
};

struct D : C {
B* f() {

cout << "B* D::f()" << endl;
return &global_B;

}
};
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struct E;

struct F : C {

// Error:
// E is incomplete
// E* f();
};

struct G : C {

// Error:
// A is an inaccessible base class of B
// B* f();
};

int main() {
D d;
C* cp = &d;
D* dp = &d;

A* ap = cp->f();
B* bp = dp->f();

};

The following is the output of the above example:
B* D::f()
B* D::f()

The statement A* ap = cp->f() calls D::f() and converts the pointer returned to
type A*. The statement B* bp = dp->f() calls D::f() as well but does not convert
the pointer returned; the type returned is B*. The compiler would not allow the
declaration of the virtual function F::f() because E is not a complete class. The
compiler would not allow the declaration of the virtual function G::f() because class
A is not an accessible base class of B (unlike friend classes D and F, the definition of
B does not give access to its members for class G).

A virtual function cannot be global or static because, by definition, a virtual function
is a member function of a base class and relies on a specific object to determine
which implementation of the function is called. You can declare a virtual function to
be a friend of another class.

If a function is declared virtual in its base class, you can still access it directly using
the scope resolution (::) operator. In this case, the virtual function call mechanism
is suppressed and the function implementation defined in the base class is used. In
addition, if you do not override a virtual member function in a derived class, a call to
that function uses the function implementation defined in the base class.

A virtual function must be one of the following:
v Defined
v Declared pure
v Defined and declared pure

A base class containing one or more pure virtual member functions is called an
abstract class.

v “Function Return Values” on page 171
v “Abstract Classes” on page 339
v “Friends” on page 310
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v “C++ Scope Resolution Operator ::” on page 102

Ambiguous Virtual Function Calls

You cannot override one virtual function with two or more ambiguous virtual
functions. This can happen in a derived class that inherits from two nonvirtual bases
that are derived from a virtual base class.

For example:
class V {
public:
virtual void f() { }
};

class A : virtual public V {
void f() { }

};

class B : virtual public V {
void f() { }
};

// Error:
// Both A::f() and B::f() try to override V::f()
class D : public A, public B { };

int main() {
D d;
V* vptr = &d;

// which f(), A::f() or B::f()?
vptr->f();
}

The compiler will not allow the definition of class D. In class A, only A::f() will
override V::f(). Similarly, in class B, only B::f() will override V::f(). However, in
class D, both A::f() and B::f() will try to override V::f(). This attempt is not
allowed because it is not possible to decide which function to call if a D object is
referenced with a pointer to class V, as shown in the above example. Only one
function can override a virtual function.

A special case occurs when the ambiguous overriding virtual functions come from
separate instances of the same class type. In the following example, class D has
two separate subobjects of class A:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "A::f()" << endl; };

};

struct B : A {
void f() { cout << "B::f()" << endl;};

};

struct C : A {
void f() { cout << "C::f()" << endl;};

};

struct D : B, C { };

int main() {

Virtual Functions
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D d;

B* bp = &d;
A* ap = bp;
D* dp = &d;

ap->f();
// dp->f();
}

Class D has two occurences of class A, one inherited from B, and another inherited
from C. Therefore there are also two occurences of the virtual function A::f. The
statement ap->f() calls D::B::f. However the compiler would not allow the
statement dp->f() because it could either call D::B::f or D::C::f.

Virtual Function Access

The access for a virtual function is specified when it is declared. The access
rules for a virtual function are not affected by the access rules for the function that
later overrides the virtual function. In general, the access of the overriding member
function is not known.

If a virtual function is called with a pointer or reference to a class object, the type of
the class object is not used to determine the access of the virtual function. Instead,
the type of the pointer or reference to the class object is used.

In the following example, when the function f() is called using a pointer having type
B*, bptr is used to determine the access to the function f(). Although the definition
of f() defined in class D is executed, the access of the member function f() in
class B is used. When the function f() is called using a pointer having type D*, dptr
is used to determine the access to the function f(). This call produces an error
because f() is declared private in class D.
class B {
public:

virtual void f();
};

class D : public B {
private:

void f();
};

int main() {
D dobj;
B* bptr = &dobj;
D* dptr = &dobj;

// valid, virtual B::f() is public,
// D::f() is called
bptr->f();

// error, D::f() is private
dptr->f();

}

Virtual Functions
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Abstract Classes

An abstract class is a class that is designed to be specifically used as a
base class. An abstract class contains at least one pure virtual function. You declare
a pure virtual function by using a pure specifier (= 0) in the declaration of a virtual
member function in the class declaration.

The following is an example of an abstract class::
class AB {
public:

virtual void f() = 0;
};

Function AB::f is a pure virtual function. A function declaration cannot have both a
pure specifier and a definition. For example, the compiler will not allow the
following:
struct A {

virtual void g() { } = 0;
};

You cannot use an abstract class as a parameter type, a function return type, or the
type of an explicit conversion, nor can you declare an object of an abstract class.
You can, however, declare pointers and references to an abstract class. The
following example demonstrates this:
struct A {

virtual void f() = 0;
};

struct B : A {
virtual void f() { }

};

// Error:
// Class A is an abstract class
// A g();

// Error:
// Class A is an abstract class
// void h(A);
A& i(A&);

int main() {

// Error:
// Class A is an abstract class
// A a;

A* pa;
B b;

// Error:
// Class A is an abstract class
// static_cast<A>(b);
}

Class A is an abstract class. The compiler would not allow the function declarations
A g() or void h(A), declaration of object a, nor the static cast of b to type A.

Abstract Classes
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Virtual member functions are inherited. A class derived from an abstract base class
will also be abstract unless you override each pure virtual function in the derived
class.

For example:
class AB {
public:

virtual void f() = 0;
};

class D2 : public AB {
void g();

};

int main() {
D2 d;

}

The compiler will not allow the declaration of object d because D2 is an abstract
class; it inherited the pure virtual function f()from AB. The compiler will allow the
declaration of object d if you define function D2::g().

Note that you can derive an abstract class from a non-abstract class, and you can
override a non-pure virtual function with a pure virtual function.

You can call member functions from a constructor or destructor of an abstract class.
However, the results of calling (directly or indirectly) a pure virtual function from its
constructor are undefined. The following example demonstrates this:
struct A {

A() {
direct();
indirect();

}
virtual void direct() = 0;
virtual void indirect() { direct(); }

};

The default constructor of A calls the pure virtual function direct() both directly and
indirectly (through indirect()).

The VisualAge C++ compiler issues a warning for the direct call to the pure
virtual function. The compiler does not issue a warning for the indirect call to the
pure virtual function.

Abstract Classes
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Chapter 15. Special Member Functions

The default constructor, destructor, copy constructor, and copy assignment
operator are special member functions. These functions create, destroy, convert,
initialize, and copy class objects.

v “Constructors” on page 342
v “Destructors” on page 350
v “Conversion by Constructor” on page 360
v “Conversion Functions” on page 361
v “Copy Constructors” on page 362

Constructors and Destructors Overview

Because classes have complicated internal structures, including data and
functions, object initialization and cleanup for classes is much more complicated
than it is for simple data structures. Constructors and destructors are special
member functions of classes that are used to construct and destroy class objects.
Construction may involve memory allocation and initialization for objects.
Destruction may involve cleanup and deallocation of memory for objects.

Like other member functions, constructors and destructors are declared within a
class declaration. They can be defined inline or external to the class declaration.
Constructors can have default arguments. Unlike other member functions,
constructors can have member initialization lists. The following restrictions apply to
constructors and destructors:
v Constructors and destructors do not have return types nor can they return

values.
v References and pointers cannot be used on constructors and destructors

because their addresses cannot be taken.
v Constructors cannot be declared with the keyword virtual.
v Constructors and destructors cannot be declared static, const, or volatile.
v Unions cannot contain class objects that have constructors or destructors.

Constructors and destructors obey the same access rules as member functions. For
example, if you declare a constructor with protected access, only derived classes
and friends can use it to create class objects.

The compiler automatically calls constructors when defining class objects and calls
destructors when class objects go out of scope. A constructor does not allocate
memory for the class object its this pointer refers to, but may allocate storage for
more objects than its class object refers to. If memory allocation is required for
objects, constructors can explicitly call the new operator. During cleanup, a
destructor may release objects allocated by the corresponding constructor. To
release objects, use the delete operator.

Derived classes do not inherit constructors or destructors from their base classes,
but they do call the constructor and destructor of base classes. Destructors can be
declared with the keyword virtual.

Constructors are also called when local or temporary class objects are created, and
destructors are called when local or temporary objects go out of scope.
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You can call member functions from constructors or destructors. You can call a
virtual function, either directly or indirectly, from a constructor or destructor of a
class A. In this case, the function called is the one defined in A or a base class of A,
but not a function overridden in any class derived from A. This avoids the possibility
of accessing an unconstructed object from a constructor or destructor. The following
example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual void f() { cout << "void A::f()" << endl; }
virtual void g() { cout << "void A::g()" << endl; }
virtual void h() { cout << "void A::h()" << endl; }

};

struct B : A {
virtual void f() { cout << "void B::f()" << endl; }
B() {

f();
g();
h();

}
};

struct C : B {
virtual void f() { cout << "void C::f()" << endl; }
virtual void g() { cout << "void C::g()" << endl; }
virtual void h() { cout << "void C::h()" << endl; }

};

int main() {
C obj;

}

The following is the output of the above example:
void B::f()
void A::g()
void A::h()

The constructor of B does not call any of the functions overridden in C because C
has been derived from B, although the example creates an object of type C named
obj.

You can use the typeid or the dynamic_cast operator in constructors or
destructors, as well as member initializers of constructors.

v “volatile and const Qualifiers” on page 69
v “static Storage Class Specifier” on page 42
v “C++ new Operator” on page 119
v “C++ delete Operator” on page 122
v “Free Store” on page 353
v “The typeid Operator” on page 139
v “dynamic_cast Operator” on page 111

Constructors

A constructor is a member function with the same name as its class. For
example:
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class X {
public:

X(); // constructor for class X
};

Constructors are used to create, and can initialize, objects of their class type.

You cannot declare a constructor as virtual or static, nor can you declare a
constructor as const, volatile, or const volatile.

You do not specify a return type for a constructor. A return statement in the body of
a constructor cannot have a return value.

Default Constructors

A default constructor is a constructor that either has no parameters, or if it
has parameters, all the parameters have default values.

If no user-defined constructor exists for a class A and one is needed, the compiler
implicitly declares a constructor A::A(). This constructor is an inline public member
of its class. The compiler will implicitly define A::A() when the compiler uses this
constructor to create an object of type A. The constructor will have no constructor
initializer and a null body.

The compiler first implicitly defines the implicitly declared constructors of the base
classes and nonstatic data members of a class A before defining the implicitly
declared constructor of A. No default constructor is created for a class that has any
constant or reference type members.

A constructor of a class A is trivial if all the following are true:
v It is implicitly defined
v A has no virtual functions and no virtual base classes
v All the direct base classes of A have trivial constructors
v The classes of all the nonstatic data members of A have trivial constructors

If any of the above are false, then the constructor is nontrivial.

A union member cannot be of a class type that has a nontrivial constructor.

Like all functions, a constructor can have default arguments. They are used to
initialize member objects. If default values are supplied, the trailing arguments can
be omitted in the expression list of the constructor. Note that if a constructor has
any arguments that do not have default values, it is not a default constructor.

A copy constructor for a class A is a constructor whose first parameter is of type A&,
const A&, volatile A&, or const volatile A&. Copy constructors are used to make
a copy of one class object from another class object of the same class type. You
cannot use a copy constructor with an argument of the same type as its class; you
must use a reference. You can provide copy constructors with additional parameters
as long as they all have default arguments. If a user-defined copy constructor does
not exist for a class and one is needed, the compiler implicitly creates a copy
constructor, with public access, for that class. A copy constructor is not created for a
class if any of its members or base classes have an inaccessible copy constructor.

The following code fragment shows two classes with constructors, default
constructors, and copy constructors:
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class X {
public:

// default constructor, no arguments
X();

// constructor
X(int, int , int = 0);

// copy constructor
X(const X&);

// error, incorrect argument type
X(X);

};

class Y {
public:

// default constructor with one
// default argument
Y( int = 0);

// default argument
// copy constructor
Y(const Y&, int = 0);

};

v “Copy Constructors” on page 362

Explicit Initialization with Constructors

A class object with a constructor must be explicitly initialized or have a
default constructor. Except for aggregate initialization, explicit initialization using a
constructor is the only way to initialize nonstatic constant and reference class
members.

A class object that has no constructors, no virtual functions, no private or protected
members, and no base classes is called an aggregate. Examples of aggregates are
C-style structures and unions.

You explicitly initialize a class object when you create that object. There are two
ways to initialize a class object:
v Using a parenthesized expression list. The compiler calls the constructor of the

class using this list as the constructor’s argument list.
v Using a single initialization value and the = operator. Because this type of

expression is an initialization, not an assignment, the assignment operator
function, if one exists, is not called. The type of the single argument must match
the type of the first argument to the constructor. If the constructor has remaining
arguments, these arguments must have default values.

v

The syntax for an initializer that explicitly initializes a class object with a constructor
is:
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��

�

( expression )
= expression

,

{ expression }
,

��

The following example shows the declaration and use of several constructors that
explicitly initialize class objects:

CCNX13A
// This example illustrates explicit initialization
// by constructor.
#include <iostream>
using namespace std;

class complx {
double re, im;

public:

// default constructor
complx() : re(0), im(0) { }

// copy constructor
complx(const complx& c) { re = c.re; im = c.im; }

// constructor with default trailing argument
complx( double r, double i = 0.0) { re = r; im = i; }

void display() {
cout << "re = "<< re << " im = " << im << endl;

}
};

int main() {

// initialize with complx(double, double)
complx one(1);

// initialize with a copy of one
// using complx::complx(const complx&)
complx two = one;

// construct complx(3,4)
// directly into three
complx three = complx(3,4);

// initialize with default constructor
complx four;

// complx(double, double) and construct
// directly into five
complx five = 5;

one.display();
two.display();
three.display();
four.display();
five.display();

}

The above example produces the following output:
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re = 1 im = 0
re = 1 im = 0
re = 3 im = 4
re = 0 im = 0
re = 5 im = 0

v “Structures” on page 51
v “Unions” on page 59

Initializing Base Classes and Members

Constructors can initialize their members in two different ways. A constructor
can use the arguments passed to it to initialize member variables in the constructor
definition:
complx(double r, double i = 0.0) { re = r; im = i; }

Or a constructor can have an initializer list within the definition but prior to the
function body:
complx(double r, double i = 0) : re(r), im(i) { /* ... */ }

Both methods assign the argument values to the appropriate data members of the
class.

The syntax for a constructor initializer list is:

�� : � �

,

identifier ( )
class_name assignment_expression

��

Include the initialization list as part of the function definition, not as part of the
constructor declaration. For example:
#include <iostream>
using namespace std;

class B1 {
int b;

public:
B1() { cout << "B1::B1()" << endl; };

// inline constructor
B1(int i) : b(i) { cout << "B1::B1(int)" << endl; }

};
class B2 {

int b;
protected:

B2() { cout << "B1::B1()" << endl; }

// noninline constructor
B2(int i);

};

// B2 constructor definition including initialization list
B2::B2(int i) : b(i) { cout << "B2::B2(int)" << endl; }

class D : public B1, public B2 {
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int d1, d2;
public:

D(int i, int j) : B1(i+1), B2(), d1(i) {
cout << "D1::D1(int, int)" << endl;
d2 = j;}

};

int main() {
D obj(1, 2);

}

The following is the output of the above example:
B1::B1(int)
B1::B1()
D1::D1(int, int)

If you do not explicitly initialize a base class or member that has constructors by
calling a constructor, the compiler automatically initializes the base class or member
with a default constructor. In the above example, if you leave out the call B2() in the
constructor of class D (as shown below), a constructor initializer with an empty
expression list is automatically created to initialize B2. The constructors for class D,
shown above and below, result in the same construction of an object of class D:
class D : public B1, public B2 {

int d1, d2;
public:

// call B2() generated by compiler
D(int i, int j) : B1(i+1), d1(i) {

cout << "D1::D1(int, int)" << endl;
d2 = j;}

};

In the above example, the compiler will automatically call the default constructor for
B2().

Note that you must declare constructors as public or protected to enable a derived
class to call them. For example:
class B {

B() { }
};

class D : public B {

// error: implicit call to private B() not allowed
D() { }

};

The compiler would not allow the definition of D::D() because this constructor
cannot access the private constructor B::B().

You must initialize the following with an initializer list: base classes with no default
constructors, reference data members, non-static const data members, or a class
type which contains a constant data member. The following example demonstrates
this:
class A {
public:

A(int) { }
};

class B : public A {
static const int i;
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const int j;
int &k;

public:
B(int& arg) : A(0), j(1), k(arg) { }

};

int main() {
int x = 0;
B obj(x);

};

The data members j and k, as well as the base class A must be initialized in the
initializer list of the constructor of B.

You can use data members when initializing members of a class. The following
example demonstrate this:
struct A {

int k;
A(int i) : k(i) { }

};
struct B: A {

int x;
int i;
int j;
int& r;
B(int i): r(x), A(i), j(this->i), i(i) { }

};

The constructor B(int i) initializes the following:
v B::x to refer to A::x
v Class A with the value of the argument to B(int i)
v B::j with the value of B::i
v B::i with the value of the argument to B(int i)

You can also call member functions (including virtual member functions) or use the
operators typeid or dynamic_cast when initializing members of a class. However if
you perform any of these operations in a member initialization list before all base
classes have been initialized, the behavior is undefined. The following example
demonstrates this:
#include <iostream>
using namespace std;

struct A {
int i;
A(int arg) : i(arg) {

cout << "Value of i: " << i << endl;
}

};

struct B : A {
int j;
int f() { return i; }
B();

};

B::B() : A(f()), j(1234) {
cout << "Value of j: " << j << endl;

}

int main() {
B obj;

}
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The output of the above example would be similar to the following:
Value of i: 8
Value of j: 1234

The behavior of the initializer A(f()) in the constructor of B is undefined. The run
time will call B::f() and try to access A::i even though the base A has not been
initialized.

The following example is the same as the previous example except that the
initializers of B::B() have different arguments:
#include <iostream>
using namespace std;

struct A {
int i;
A(int arg) : i(arg) {

cout << "Value of i: " << i << endl;
}

};

struct B : A {
int j;
int f() { return i; }
B();

};

B::B() : A(5678), j(f()) {
cout << "Value of j: " << j << endl;

}

int main() {
B obj;

}

The following is the output of the above example:
Value of i: 5678
Value of j: 5678

The behavior of the initializer j(f()) in the constructor of B is well-defined. The
base class A is already initialized when B::j is initialized.

v “Default Constructors” on page 343
v “The typeid Operator” on page 139
v “dynamic_cast Operator” on page 111

Construction Order of Derived Class Objects

When a derived class object is created using constructors, it is created in
the following order:

1. Virtual base classes are initialized, in the order they appear in the base list.

2. Nonvirtual base classes are initialized, in declaration order.

3. Class members are initialized in declaration order (regardless of their order in
the initialization list).

4. The body of the constructor is executed.

The following example demonstrates this:
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#include <iostream>
using namespace std;
struct V {

V() { cout << "V()" << endl; }
};
struct V2 {

V2() { cout << "V2()" << endl; }
};
struct A {

A() { cout << "A()" << endl; }
};
struct B : virtual V {

B() { cout << "B()" << endl; }
};
struct C : B, virtual V2 {

C() { cout << "C()" << endl; }
};
struct D : C, virtual V {

A obj_A;
D() { cout << "D()" << endl; }

};
int main() {

D c;
}

The following is the output of the above example:
V()
V2()
B()
C()
A()
D()

The above output lists the order in which the C++ run time calls the constructors to
create an object of type D.

v “Virtual Base Classes” on page 328

Destructors

Destructors are usually used to deallocate memory and do other cleanup for
a class object and its class members when the object is destroyed. A destructor is
called for a class object when that object passes out of scope or is explicitly
deleted.

A destructor is a member function with the same name as its class prefixed by a x
(tilde). For example:
class X {
public:

// Constructor for class X
X();
// Destructor for class X
xX();

};

A destructor takes no arguments and has no return type. Its address cannot be
taken. Destructors cannot be declared const, volatile, const volatile or static. A
destructor can be declared virtual or pure virtual.
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If no user-defined destructor exists for a class and one is needed, the compiler
implicitly declares a destructor. This implicitly declared constructor is an inline public
member of its class.

The compiler will implicitly define an implicitly declared destructor when the compiler
uses the destructor to destroy an object of the destructor’s class type. Suppose a
class A has an implicitly declared destructor. The following is equivalent to the
function the compiler would implicitly define for A:

xA::A() { }

The compiler first implicitly defines the implicitly declared destructors of the base
classes and nonstatic data members of a class A before defining the implicitly
declared destructor of A

A destructor of a class A is trivial if all the following are true:
v It is implicitly defined
v All the direct base classes of A have trivial destructors
v The classes of all the nonstatic data members of A have trivial destructors

If any of the above are false, then the destructor is nontrivial.

A union member cannot be of a class type that has a nontrivial destructor.

Class members that are class types can have their own destructors. Both base and
derived classes can have destructors, although destructors are not inherited. If a
base class A or a member of A has a destructor, and a class derived from A does
not declare a destructor, a default destructor is generated.

The default destructor calls the destructors of the base class and members of the
derived class.

The destructors of base classes and members are called in the reverse order of the
completion of their constructor:

1. The destructor for a class object is called before destructors for members and
bases are called.

2. Destructors for nonstatic members are called before destructors for base
classes are called.

3. Destructors for nonvirtual base classes are called before destructors for virtual
base classes are called.

When an exception is thrown for a class object with a destructor, the destructor for
the temporary object thrown is not called until control passes out of the catch block.

Destructors are implicitly called when an automatic object (a local object that has
been declared auto or register, or not declared as static or extern) or temporary
object passes out of scope. They are implicitly called at program termination for
constructed external and static objects. Destructors are invoked when you use the
delete operator for objects created with the new operator.

For example:
#include <string>

class Y {
private:

char * string;
int number;
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public:
// Constructor
Y(const char*, int);
// Destructor
xY() { delete[] string; }

};

// Define class Y constructor
Y::Y(const char* n, int a) {

string = strcpy(new char[strlen(n) + 1 ], n);
number = a;

}

int main () {
// Create and initialize
// object of class Y
Y yobj = Y("somestring", 10);

// ...

// Destructor xY is called before
// control returns from main()

}

You can use a destructor explicitly to destroy objects, although this practice is not
recommended. However to destroy an object created with the placement new
operator, you can explicitly call the object’s destructor. The following example
demonstrates this:
#include <new>
#include <iostream>
using namespace std;
class A {

public:
A() { cout << "A::A()" << endl; }
xA() { cout << "A::xA()" << endl; }

};
int main () {

char* p = new char[sizeof(A)];
A* ap = new (p) A;
ap->A::xA();
delete [] p;

}

The statement A* ap = new (p) A dynamically creates a new object of type A not in
the free store but in the memory allocated by p. The statement delete [] p will
delete the storage allocated by p, but the run time will still believe that the object
pointed to by ap still exists until you explicitly call the destructor of A (with the
statement ap->A::xA()).

Nonclass types have a pseudo destructor. The following example calls the pseudo
destructor for an integer type:
typedef int I;
int main() {

I x = 10;
x.I::xI();
x = 20;

}

The call to the pseudo destructor, x.I::xI(), has no effect at all. Object x has not
been destroyed; the assignment x = 20 is still valid. Because pseudo destructors
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require the syntax for explicitly calling a destructor for a nonclass type to be valid,
you can write code without having to know whether or not a destructor exists for a
given type.

v “C++ new Operator” on page 119
v “C++ delete Operator” on page 122
v “Temporary Objects” on page 357

Free Store

Free store is a pool of memory available for you to allocate (and deallocate)
storage for objects during the execution of your program. The new and delete
operators are used to allocate and deallocate free store, respectively.

You can define your own versions of new and delete for a class by overloading
them. You can declare the new and delete operators with additional parameters.
When new and delete operate on class objects, the class member operator
functions new and delete are called, if they have been declared.

If you create a class object with the new operator, one of the operator functions
operator new() or operator new[]() (if they have been declared) is called to create
the object. An operator new() or operator new[]() for a class is always a static
class member, even if it is not declared with the keyword static. It has a return type
void* and its first parameter must be the size of the object type and have type
std::size_t. It cannot be virtual.

Type std::size_t is an implementation-dependent unsigned integral type defined in
the standard library header <cstddef>.

When you overload the new operator, you must declare it as a class member,
returning type void*, with its first parameter of type std::size_t, as described
above. You can declare additional parameters in the declaration of operator new()
or operator new[](). Use the placement syntax to specify values for these
parameters in an allocation expression.

The following example overloads two operator new functions:
v X::operator new(size_t sz): This overloads the default new operator by

allocating memory with the C function malloc(), and throwing a string (instead of
std::bad_alloc) if malloc() fails.

v X::operator new(size_t sz, int location): This function takes an additional
integer parameter, location. This function implements a very simplistic ″memory
manager″ that manages the storage of up to three X objects.

Static array X::buffer holds three Node objects. Each Node object contains a
pointer to an X object named data and a boolean variable named filled. Each X
object stores an integer called number.

When you use this new operator, you pass the argument location which
indicates the array location of buffer where you want to ″create″ your new X
object. If the array location is not ″filled″ (the data member of filled is equal to
false at that array location), the new operator returns a pointer pointing to the X
object located at buffer[location].

#include <new>
#include <iostream>
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using namespace std;

class X;

struct Node {
X* data;
bool filled;
Node() : filled(false) { }

};

class X {
static Node buffer[];

public:

int number;

enum {size = 3};

void* operator new(size_t sz) throw (const char*) {
void* p = malloc(sz);
if (sz == 0) throw "Error: malloc() failed";
cout << "X::operator new(size_t)" << endl;
return p;

}

void *operator new(size_t sz, int location) throw (const char*) {
cout << "X::operator new(size_t, " << location << ")" << endl;
void* p = 0;
if (location < 0 || location >= size || buffer[location].filled == true) {

throw "Error: buffer location occupied";
}
else {
p = malloc(sizeof(X));

if (p == 0) throw "Error: Creating X object failed";
buffer[location].filled = true;

buffer[location].data = (X*) p;
}
return p;

}

static void printbuffer() {
for (int i = 0; i < size; i++) {

cout << buffer[i].data->number << endl;
}

}

};

Node X::buffer[size];

int main() {
try {

X* ptr1 = new X;
X* ptr2 = new(0) X;
X* ptr3 = new(1) X;
X* ptr4 = new(2) X;
ptr2->number = 10000;
ptr3->number = 10001;
ptr4->number = 10002;
X::printbuffer();
X* ptr5 = new(0) X;

}
catch (const char* message) {

cout << message << endl;
}

}
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The following is the output of the above example:
X::operator new(size_t)
X::operator new(size_t, 0)
X::operator new(size_t, 1)
X::operator new(size_t, 2)
10000
10001
10002
X::operator new(size_t, 0)
Error: buffer location occupied

The statement X* ptr1 = new X calls X::operator new(sizeof(X)). The statement
X* ptr2 = new(0) X calls X::operator new(sizeof(X),0).

The delete operator destroys an object created by the new operator. The operand
of delete must be a pointer returned by new. If delete is called for an object with a
destructor, the destructor is invoked before the object is deallocated.

If you destroy a class object with the delete operator, the operator function
operator delete() or operator delete[]() (if they have been declared) is called to
destroy the object. An operator delete() or operator delete[]() for a class is always
a static member, even if it is not declared with the keyword static. Its first
parameter must have type void*. Because operator delete() and operator
delete[]() have a return type void, they cannot return a value.

The following example shows the declaration and use of the operator functions
operator new() and operator delete():
#include <cstdlib>
#include <iostream>
using namespace std;

class X {
public:

void* operator new(size_t sz) throw (const char*) {
void* p = malloc(sz);
if (p == 0) throw "malloc() failed";
return p;

}

// single argument
void operator delete(void* p) {

cout << "X::operator delete(void*)" << endl;
free(p);

}

};

class Y {
int filler[100];

public:

// two arguments
void operator delete(void* p, size_t sz) throw (const char*) {

cout << "Freeing " << sz << " byte(s)" << endl;
free(p);

};

};

int main() {
X* ptr = new X;

// call X::operator delete(void*)
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delete ptr;

Y* yptr = new Y;

// call Y::operator delete(void*, size_t)
// with size of Y as second argument
delete yptr;

}

The above example will generate output similar to the following:
X::operator delete(void*)
Freeing 400 byte(s)

The statement delete ptr calls X::operator delete(void*). The statement delete
yptr calls Y::operator delete(void*, size_t).

The result of trying to access a deleted object is undefined because the value of the
object can change after deletion.

If new and delete are called for a class object that does not declare the operator
functions new and delete, or they are called for a nonclass object, the global
operators new and delete are used. The global operators new and delete are
provided in the C++ library.

The C++ operators for allocating and deallocating arrays of class objects are
operator new[ ]() and operator delete[ ]().

You cannot declare the delete operator as virtual. However you can add
polymorphic behavior to your delete operators by declaring the destructor of a base
class as virtual. The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual xA() { cout << "xA()" << endl; };
void operator delete(void* p) {

cout << "A::operator delete" << endl;
free(p);

}
};

struct B : A {
void operator delete(void* p) {

cout << "B::operator delete" << endl;
free(p);

}
};

int main() {
A* ap = new B;
delete ap;

}

The following is the output of the above example:
xA()
B::operator delete

The statement delete ap uses the delete operator from class B instead of class A
because the destructor of A has been declared as virtual.
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Although you can get polymorphic behavior from the delete operator, the delete
operator that is statically visible must still be accessible even though another delete
operator might be called. For example, in the above example, the function
A::operator delete(void*) must be accessible even though the example calls
B::operator delete(void*) instead.

Virtual destructors do not have any affect on deallocation operators for arrays
(operator delete[]()). The following example demonstrates this:
#include <iostream>
using namespace std;

struct A {
virtual xA() { cout << "xA()" << endl; }
void operator delete[](void* p, size_t) {

cout << "A::operator delete[]" << endl;
::delete [] p;

}
};

struct B : A {
void operator delete[](void* p, size_t) {

cout << "B::operator delete[]" << endl;
::delete [] p;

}
};

int main() {
A* bp = new B[3];
delete[] bp;

};

The behavior of the statement delete[] bp is undefined.

When you overload the delete operator, you must declare it as class member,
returning type void, with the first parameter having type void*, as described above.
You can add a second parameter of type size_t to the declaration. You can only
have one operator delete() or operator delete[]() for a single class.

v “C++ new Operator” on page 119
v “C++ delete Operator” on page 122
v “Allocation and Deallocation Functions” on page 123

Temporary Objects

It is sometimes necessary for the compiler to create temporary objects.
They are used during reference initialization and during evaluation of expressions
including standard type conversions, argument passing, function returns, and
evaluation of the throw expression.

When a temporary object is created to initialize a reference variable, the name of
the temporary object has the same scope as that of the reference variable. When a
temporary object is created during the evaluation of a full-expression (an expression
that is not a subexpression of another expression), it is destroyed as the last step in
its evaluation that lexically contains the point where it was created.

There are two exceptions in the destruction of full-expressions:
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v The expression appears as an initializer for a declaration defining an object: the
temporary object is destroyed when the initialization is complete.

v A reference is bound to a temporary object: the temporary object is destroyed at
the end of the reference’s lifetime.

If a temporary object is created for a class with constructors, the compiler calls the
appropriate (matching) constructor to create the temporary object.

When a temporary object is destroyed and a destructor exists, the compiler calls
the destructor to destroy the temporary object. When you exit from the scope in
which the temporary object was created, it is destroyed. If a reference is bound to a
temporary object, the temporary object is destroyed when the reference passes out
of scope unless it is destroyed earlier by a break in the flow of control. For
example, a temporary object created by a constructor initializer for a reference
member is destroyed on leaving the constructor.

The ISO C++ definition permits an implementation that eliminates the construction
of such temporary objects in cases in which they are redundant.

The VisualAge C++ compiler takes advantage of this fact to create more
efficient optimized code. Take this into consideration when debugging your
programs, especially for memory problems.

v “Arguments of catch Blocks” on page 407
v “Initializing References” on page 93
v “Cast Expressions” on page 135
v “Function Return Values” on page 171

User-Defined Conversions

User-defined conversions allow you to specify object conversions with
constructors or with conversion functions. User-defined conversions are implicitly
used in addition to standard conversions for conversion of initializers, functions
arguments, function return values, expression operands, expressions controlling
iteration, selection statements, and explicit type conversions.

There are two types of user-defined conversions:
v Conversion by constructor
v Conversion functions

The compiler can use only one user-defined conversion (either a conversion
constructor or a conversion function) when implicitly converting a single value. The
following example demonstrates this:
class A {

int x;
public:

operator int() { return x; };
};

class B {
A y;

public:
operator A() { return y; };

};
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int main () {
B b_obj;

// int i = b_obj;
int j = A(b_obj);

}

The compiler would not allow the statement int i = b_obj. The compiler would
have to implicitly convert b_obj into an object of type A (with B::operator A()), then
implicitly convert that object to an integer (with A::operator int()). The statement
int j = A(b_obj) explicitly converts b_obj into an object of type A, then implicitly
converts that object to an integer.

User-defined conversions must be unambiguous, or they are not called. A
conversion function in a derived class does not hide another conversion function in
a base class unless both conversion functions convert to the same type. Function
overload resolution selects the most appropriate conversion function. The following
example demonstrates this:
class A {

int a_int;
char* a_carp;

public:
operator int() { return a_int; }
operator char*() { return a_carp; }

};

class B : public A {
float b_float;
char* b_carp;

public:
operator float() { return b_float; }
operator char*() { return b_carp; }

};

int main () {
B b_obj;

// long a = b_obj;
char* c_p = b_obj;

}

The compiler would not allow the statement long a = b_obj. The compiler could
either use A::operator int() or B::operator float() to convert b_obj into a long.
The statement char* c_p = b_obj uses B::operator char*() to convert b_obj into
a char* because B::operator char*() hides A::operator char*().

When you call a constructor with an argument and you have not defined a
constructor accepting that argument type, only standard conversions are used to
convert the argument to another argument type acceptable to a constructor for that
class. No other constructors or conversions functions are called to convert the
argument to a type acceptable to a constructor defined for that class. The following
example demonstrates this:
class A {
public:

A() { }
A(int) { }

};

int main() {
A a1 = 1.234;

// A moocow = "text string";
}
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The compiler allows the statement A a1 = 1.234. The compiler uses the standard
conversion of converting 1.234 into an int, then implicitly calls the converting
constructor A(int). The compiler would not allow the statement A moocow = "text
string"; converting a text string to an integer is not a standard conversion.

v “Standard Type Conversions” on page 144

Conversion by Constructor

A converting constructor is a constructor that can be called with one
parameter, but is not declared without the function specifier explicit. The compiler
uses converting constructors to convert objects from the type of the first parameter
to the type of the converting constructor’s class. The following example
demonstrates this:
class Y {

int a, b;
char* name;

public:
Y(int i) { };
Y(const char* n, int j = 0) { };

};

void add(Y) { };

int main() {

// equivalent to
// obj1 = Y(2)
Y obj1 = 2;

// equivalent to
// obj2 = Y("somestring",0)
Y obj2 = "somestring";

// equivalent to
// obj1 = Y(10)
obj1 = 10;

// equivalent to
// add(Y(5))
add(5);

}

The above example has the following two converting constructors:
v Y(int i)which is used to convert integers to objects of class Y.
v Y(const char* n, int j = 0) which is used to convert pointers to strings to

objects of class Y.

The compiler will not implicitly convert types as demonstrated above with
constructors declared with the explicit keyword. The compiler will only use explicitly
declared constructors in new expressions, the static_cast expressions and explicit
casts, and the initialization of bases and members. The following example
demonstrates this:
class A {
public:

explicit A() { };
explicit A(int) { };

};
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int main() {
A z;

// A y = 1;
A x = A(1);
A w(1);
A* v = new A(1);
A u = (A)1;
A t = static_cast<A>(1);

}

The compiler would not allow the statement A y = 1 because this is an implicit
conversion; class A has no conversion constructors.

A copy constructor is a converting constructor.

v “The explicit Keyword” on page 150
v “C++ new Operator” on page 119
v “static_cast Operator” on page 108
v “Cast Expressions” on page 135

Conversion Functions

You can define a member function of a class, called a conversion function,
that converts from the type of its class to another specified type.

��
class ::

operator
const
volatile

conversion_type �

�

� pointer_operator

( )
{ function_body }

��

A conversion function that belongs to a class X specifies a conversion from the
class type X to the type specified by the conversion_type. The following code
fragment shows a conversion function called operator int():
class Y {

int b;
public:

operator int();
};
Y::operator int() {

return b;
}
void f(Y obj) {

int i = int(obj);
int j = (int)obj;
int k = i + obj;

}

All three statements in function f(Y) use the conversion function Y::operator
int().
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Classes, enumerations, typedef names, function types, or array types cannot be
declared or defined in the conversion_type. You cannot use a conversion function to
convert an object of type A to type A, a base class of A, or void.

Conversion functions have no arguments, and the return type is implicitly the
conversion type. Conversion functions can be inherited. You can have virtual
conversion functions but not static ones.

Copy Constructors

The copy constructor lets you create a new object from an existing one by
initialization. A copy constructor of a class A is a nontemplate constructor in which
the first parameter is of type A&, const A&, volatile A&, or const volatile A&, and
the rest of its parameters (if there are any) have default values.

If you do not declare a copy constructor for a class A, the compiler will implicitly
declare one for you, which will be an inline public member.

The following example demonstrates implicitly defined and user-defined copy
constructors:
#include <iostream>
using namespace std;

struct A {
int i;
A() : i(10) { }

};

struct B {
int j;
B() : j(20) {

cout << "Constructor B(), j = " << j << endl;
}

B(B& arg) : j(arg.j) {
cout << "Copy constructor B(B&), j = " << j << endl;

}

B(const B&, int val = 30) : j(val) {
cout << "Copy constructor B(const B&, int), j = " << j << endl;

}
};

struct C {
C() { }
C(C&) { }

};

int main() {
A a;
A a1(a);
B b;
const B b_const;
B b1(b);
B b2(b_const);
const C c_const;

// C c1(c_const);
}

The following is the output of the above example:
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Constructor B(), j = 20
Constructor B(), j = 20
Copy constructor B(B&), j = 20
Copy constructor B(const B&, int), j = 30

The statement A a1(a) creates a new object from a with an implicitly defined copy
constructor. The statement B b1(b) creates a new object from b with the
user-defined copy constructor B::B(B&). The statement B b2(b_const) creates a
new object with the copy constructor B::B(const B&, int). The compiler would not
allow the statement C c1(c_const) because a copy constructor that takes as its first
parameter an object of type const C& has not been defined.

The implicitly declared copy constructor of a class A will have the form A::A(const
A&) if the following are true:
v The direct and virtual bases of A have copy constructors whose first parameters

have been qualified with const or const volatile
v The nonstatic class type or array of class type data members of A have copy

constructors whose first parameters have been qualified with const or const
volatile

If the above are not true for a class A, the compiler will implicitly declare a copy
constructor with the form A::A(A&).

The compiler cannot allow a program in which the compiler must implicitly define a
copy constructor for a class A and one or more of the following are true:
v Class A has a nonstatic data member of a type which has an inaccessible or

ambiguous copy constructor.
v Class A is derived from a class which has an inaccessible or ambiguous copy

constructor.

The compiler will implicitly define an implicitly declared constructor of a class A if
you initialize an object of type A or an object derived from class A.

An implicitly defined copy constructor will copy the bases and members of an object
in the same order that a constructor would initialize the bases and members of the
object.

v “Constructors and Destructors Overview” on page 341

Copy Assignment Operators

The copy assignment operator lets you create a new object from an existing
one by initialization. A copy assignment operator of a class A is a nonstatic
nontemplate member function that has one of the following forms:
v A::operator=(A)
v A::operator=(A&)
v A::operator=(const A&)
v A::operator=(volatile A&)
v A::operator=(const volatile A&)

If you do not declare a copy assignment operator for a class A, the compiler will
implicitly declare one for you which will be inline public.
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The following example demonstrates implicitly defined and user-defined copy
assignment operators:
#include <iostream>
using namespace std;

struct A {
A& operator=(const A&) {

cout << "A::operator=(const A&)" << endl;
return *this;

}

A& operator=(A&) {
cout << "A::operator=(A&)" << endl;
return *this;

}

};
class B {

A a;
};

struct C {
C& operator=(C&) {

cout << "C::operator=(C&)" << endl;
return *this;

}
C() { }

};

int main() {
B x, y;
x = y;

A w, z;
w = z;

C i;
const C j();

// i = j;
}

The following is the output of the above example:
A::operator=(const A&)
A::operator=(A&)

The assignment x = y calls the implicitly defined copy assignment operator of B,
which calls the user-defined copy assignment operator A::operator=(const A&).
The assignment w = z calls the user-defined operator A::operator=(A&). The
compiler will not allow the assignment i = j because an operator
C::operator=(const C&) has not been defined.

The implicitly declared copy assignment operator of a class A will have the form A&
A::operator=(const A&) if the following are true:
v A direct or virtual base B of class A has a copy assignment operator whose

parameter is of type const B&, const volatile B&, or B.
v A non-static class type data member of type X that belongs to class A has a copy

constructor whose parameter is of type const X&, const volatile X&, or X.

If the above are not true for a class A, the compiler will implicitly declare a copy
assignment operator with the form A& A::operator=(A&).
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The implicitly declared copy assignment operator returns a reference to the
operator’s argument.

The copy assignment operator of a derived class hides the copy assignment
operator of its base class.

The compiler cannot allow a program in which the compiler must implicitly define a
copy assignment operator for a class A and one or more of the following are true:
v Class A has a nonstatic data member of a const type or a reference type
v Class A has a nonstatic data member of a type which has an inaccessible copy

assignment operator
v Class A is derived from a base class with an inaccessible copy assignment

operator.

An implicitly defined copy assignment operator of a class A will first assign the direct
base classes of A in the order that they appear in the definition of A. Next, the
implicitly defined copy assignment operator will assign the nonstatic data members
of A in the order of their declaration in the definition of A.

v “Constructors and Destructors Overview” on page 341
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Chapter 16. Templates

A template describes a set of related classes or set of related functions in
which a list of parameters in the declaration describe how the members of the set
vary. The compiler generates new classes or functions when you supply arguments
for these parameters; this process is called template instantiation. This class or
function definition generated from a template and a set of template parameters is
called a specialization.

Syntax — Template Declaration

��
export

template < template_parameter_list > declaration ��

The compiler accepts and silently ignores the export keyword on a template.

The template_parameter_list is a comma-separated list of the following kinds of
template parameters:
v non-type
v type
v template

The declaration is one of the following::
v a declaration or definition of a function or a class
v a definition of a member function or a member class
v a definition of a static data member of a class template
v a definition of a static data member of a class nested within a class template
v a definition of a member template of a class or class template

The identifier of a type is defined to be a type_name in the scope of the template
declaration. A template declaration can appear as a namespace scope or class
scope declaration.

The following example demonstrates the use of a class template:
template<class L> class Key
{

L k;
L* kptr;
int length;

public:
Key(L);
// ...

};

Suppose the following declarations appear later:
Key<int> i;

Key<char*> c;
Key<mytype> m;

The compiler would create three objects. The following table shows the definitions
of these three objects if they were written out in source form as regular classes, not
as templates:
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class Key<int> i; class Key<char*> c; class Key<mytype> m;

class Key
{

int k;
int * kptr;
int length;

public:
Key(int);
// ...

};

class Key
{

char* k;
char** kptr;
int length;

public:
Key(char*);
// ...

};

class Key
{

mytype k;
mytype* kptr;
int length;

public:
Key(mytype);
// ...

};

Note that these three classes have different names. The arguments contained
within the angle braces are not just the arguments to the class names, but part of
the class names themselves. Key<int> and Key<char*> are class names.

v “Template Instantiation” on page 387

v “Template Specialization” on page 390

v “Template Parameters”

Template Parameters

There are three kinds of template parameters:
v type
v non-type
v template

You may interchange the keywords class and typename in a template parameter
declaration. You cannot use storage class specifiers (static and auto) in a template
parameter declaration.

v “Type Template Parameters”

v “Non-Type Template Parameters” on page 369

v “Template Template Parameters” on page 369

Type Template Parameters

The following is the syntax of a type template parameter declaration:

Syntax —Type Template Parameter Declaration

�� class
typename

identifier
= type

��

The identifier is the name of a type.

v “The Keyword typename” on page 398
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Non-Type Template Parameters

The syntax of a non-type template parameter is the same as a declaration
of one of the following types:
v integral or enumeration
v pointer to object or pointer to function
v reference to object or reference to function
v pointer to member

Non-type template parameters that are declared as arrays or functions are
converted to pointers or pointer to functions, respectively. The following example
demonstrates this:
template<int a[4]> struct A { };
template<int f(int)> struct B { };

int q;
int g(int) {return 0;}

A<&q> x;
B<&g> y;

The type of &q is int *, and the type of &g is int (*)(int).

You may qualify a non-type template parameter with const or volatile.

You cannot declare a non-type template parameter as a floating point, class, or void
type.

Non-type template parameters are not lvalues.

v “volatile and const Qualifiers” on page 69

v “Lvalues and Rvalues” on page 99

Template Template Parameters

The following is the syntax of a template template parameter declaration:

Syntax —Template Template Parameter Declaration

�� template < template-parameter-list > class
identifier = id- expression

��

The following example demonstrates a declaration and use of a template template
parameter:
template<template <class T> class X> class A { };
template<class T> class B { };

A<B> a;

v “Template Parameters” on page 368
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Default Arguments for Template Parameters

Template parameters may have default arguments. The set of default
template arguments accumulates over all declarations of a given template. The
following example demonstrates this:
template<class T, class U = int> class A;
template<class T = float, class U> class A;

template<class T, class U> class A {
public:

T x;
U y;

};

A<> a;

The type of member a.x is float, and the type of a.y is int.

You cannot give default arguments to the same template parameters in different
declarations in the same scope. For example, the compiler will not allow the
following:
template<class T = char> class X;
template<class T = char> class X { };

If one template parameter has a default argument, then all template parameters
following it must also have default arguments. For example, the compiler will not
allow the following:
template<class T = char, class U, class V = int> class X { };

Template parameter U needs a default argument or the default for T must be
removed.

The scope of a template parameter starts from the point of its declaration to the end
of its template definition. This implies that you may use the name of a template
parameter in other template parameter declarations and their default arguments.
The following example demonstrates this:
template<class T = int> class A;
template<class T = float> class B;
template<class V, V obj> class A;
// a template parameter (T) used as the default argument
// to another template parameter (U)
template<class T, class U = T> class C { };

v “Template Parameters” on page 368

Template Arguments

There are three kinds of template arguments corresponding to the three
types of template parameters:
v type
v non-type
v template

A template argument must match the type and form specified by the corresponding
parameter declared in the template.
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To use the default value of a template parameter, you omit the corresponding
template argument. However, even if all template parameters have defaults, you still
must use the <> brackets. For example, the following will yield a syntax error:
template<class T = int> class X { };
X<> a;
X b;

The last declaration, X b, will yield an error.

v “Template Type Arguments”

v “Template Non-Type Arguments”

v “Template Template Arguments” on page 373

Template Type Arguments

You cannot use one of the following as a template argument for a type
template parameter:
v a local type
v a type with no linkage
v an unnamed type
v a type compounded from any of the above types

If it is ambiguous whether a template argument is a type or an expression, the
template argument is considered to be a type. The following example demonstrates
this:
template<class T> void f() { };
template<int i> void f() { };

int main() {
f<int()>();

}

The function call f<int()>() calls the function with T as a template argument – the
compiler considers int() as a type – and therefore implicitly instantiates and calls
the first f().

v “Local Scope” on page 1

v “No Linkage” on page 7

v “Declaring and Using Bit Fields in Structures” on page 55

v “typedef” on page 43

Template Non-Type Arguments

A non-type template argument provided within a template argument list is an
expression whose value can be determined at compile time. Such arguments must
be constant expressions, addresses of functions or objects with external linkage, or
addresses of static class members. Non-type template arguments are normally
used to initialize a class or to specify the sizes of class members.

For non-type integral arguments, the instance argument matches the corresponding
template argument as long as the instance argument has a value and sign
appropriate to the argument type.
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For non-type address arguments, the type of the instance argument must be of the
form identifier or &identifier, and the type of the instance argument must match
the template argument exactly, except that a function name is changed to a pointer
to function type before matching.

The resulting values of non-type template arguments within a template argument list
form part of the template class type. If two template class names have the same
template name and if their arguments have identical values, they are the same
class.

In the following example, a class template is defined that requires a non-type
template int argument as well as the type argument:
template<class T, int size> class myfilebuf
{

T* filepos;
static int array[size];

public:
myfilebuf() { /* ... */ }
˜myfilebuf();
advance(); // function defined elsewhere in program

};

In this example, the template argument size becomes a part of the template class
name. An object of such a template class is created with both the type argument T
of the class and the value of the non-type template argument size.

An object x, and its corresponding template class with arguments double and
size=200, can be created from this template with a value as its second template
argument:
myfilebuf<double,200> x;

x can also be created using an arithmetic expression:
myfilebuf<double,10*20> x;

The objects created by these expressions are identical because the template
arguments evaluate identically. The value 200 in the first expression could have
been represented by an expression whose result at compile time is known to be
equal to 200, as shown in the second construction.

Note: Arguments that contain the < symbol or the > symbol must be enclosed in
parentheses to prevent it from being parsed as a template argument list
delimiter when it is being used as a relational operator or a nested template
delimiter. For example, the arguments in the following definition are valid:
myfilebuf<double, (75>25)> x; // valid

The following definition, however, is not valid because the greater than
operator (>) is interpreted as the closing delimiter of the template argument
list:
myfilebuf<double, 75>25> x; // error

If the template arguments do not evaluate identically, the objects created are of
different types:
myfilebuf<double,200> x; // create object x of class

// myfilebuf<double,200>
myfilebuf<double,200.0> y; // error, 200.0 is a double,

// not an int
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The instantiation of y fails because the value 200.0 is of type double, and the
template argument is of type int.

The following two objects:
myfilebuf<double, 128> x
myfilebuf<double, 512> y

are objects of separate template specializations. Referring either of these objects
later with myfilebuf<double> is an error.

A class template does not need to have a type argument if it has non-type
arguments. For example, the following template is a valid class template:
template<int i> class C
{

public:
int k;
C() { k = i; }

};

This class template can be instantiated by declarations such as:
class C<100>;
class C<200>;

Again, these two declarations refer to distinct classes because the values of their
non-type arguments differ.

v “Integer Constant Expressions” on page 101

v “References” on page 92

v “External Linkage” on page 6

v “Static Members” on page 303

Template Template Arguments

A template argument for a template template parameter is the name of a
class template.

When the compiler tries to find a template to match the template template
argument, it only considers primary class templates. (A primary template is the
template that is being specialized.) The compiler will not consider any partial
specialization even if their parameter lists match that of the template template
parameter. For example, the compiler will not allow the following code:
template<class T, int i> class A {

int x;
};

template<class T> class A<T, 5> {
short x;

};

template<template<class T> class U> class B1 { };

B1<A> c;

Chapter 16. Templates 373



The compiler will not allow the declaration B1<A> c. Although the partial
specialization of A seems to match the template template parameter U of B1, the
compiler considers only the primary template of A, which has different template
parameters than U.

The compiler considers the partial specializations based on a template template
argument once you have instantiated a specialization based on the corresponding
template template parameter. The following example demonstrates this:
#include <iostream>
using namespace std;

template<class T, class U> class A {
int x;

};

template<class U> class A<int, U> {
short x;

};

template<template<class T, class U> class V> class B {
V<int, char> i;
V<char, char> j;

};

B<A> c;

int main() {
cout << typeid(c.i.x).name() << endl;
cout << typeid(c.j.x).name() << endl;

}

The following is the output of the above example:
short
int

The declaration V<int, char> i uses the partial specialization while the declaration
V<char, char> j uses the primary template.

v “Partial Specialization” on page 395

v “Template Instantiation” on page 387

Class Templates

The relationship between a class template and an individual class is like the
relationship between a class and an individual object. An individual class defines
how a group of objects can be constructed, while a class template defines how a
group of classes can be generated.

Note the distinction between the terms class template and template class:

Class template
is a template used to generate template classes. You cannot
declare an object of a class template.

Template class
is an instance of a class template.
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A template definition is identical to any valid class definition that the template might
generate, except for the following:
v The class template definition is preceded by

template
< template-parameter-list >

where template-parameter-list is a comma-separated list of one or more of the
following kinds of template parameters:
– type
– non-type
– template

v Types, variables, constants and objects within the class template can be declared
using the template parameters as well as explicit types (for example, int or
char).

A class template can be declared without being defined by using an elaborated type
specifier. For example:
template
<class L,class T> class key;

This reserves the name as a class template name. All template declarations for a
class template must have the same types and number of template arguments. Only
one template declaration containing the class definition is allowed.

Note: When you have nested template argument lists, you must have a separating
space between the > at the end of the inner list and the one at the end of
the outer list. Otherwise, there is an ambiguity between the output operator
>> and two template list delimiters >.

template <class L,class T> class key { /* ... */
};
template <class L> class vector { /* ... */ };;

int main ()
{

class key <int, vector<int> >;
// implicitly instantiates template

}

Objects and function members of individual template classes can be accessed by
any of the techniques used to access ordinary class member objects and functions.
Given a class template:
template<class T> class vehicle
{
public:

vehicle() { /* ... */ } // constructor
˜vehicle() {}; // destructor
T kind[16];
T* drive();
static void roadmap();
// ...

};

and the declaration:
vehicle<char> bicycle; // instantiates the template

the constructor, the constructed object, and the member function drive() can be
accessed with any of the following (assuming the standard header file <string.h> is
included in the program file):
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constructor vehicle<char> bicycle;

// constructor called automatically,
// object bicycle created

object bicycle strcpy (bicycle.kind, "10 speed");
bicycle.kind[0] = '2';

function drive() char* n = bicycle.drive();

function roadmap() vehicle<char>::roadmap();

v “Declaring Class Types” on page 283

v “Scope of Class Names” on page 287

Class Template Declarations and Definitions

A class template must be declared before any declaration of a
corresponding template class. A class template definition can only appear once in
any single compilation unit. A class template must be defined before any use of a
template class that requires the size of the class or refers to members of the class.

None of these order restrictions apply to the incremental compiler with
unordered programming.

In the following example, the class template key is declared before it is defined. The
declaration of the pointer keyiptr is valid because the size of the class is not
needed. The declaration of keyi, however, causes an error.
template <class L> class key; // class template declared,

// not defined yet
//

class key<int> *keyiptr; // declaration of pointer
//

class key<int> keyi; // error, cannot declare keyi
// without knowing size
//

template <class L> class key // now class template defined
{ /* ... */ };

If a template class is used before the corresponding class template is defined, the
compiler issues an error. A class name with the appearance of a template class
name is considered to be a template class. In other words, angle brackets are valid
in a class name only if that class is a template class.

The definition of a class template is not compiled until the definition of a template
class is required. At that point, the class template definition is compiled using the
argument list of the template class to instantiate the template arguments. Any errors
in the class definition are flagged at this time.

In the z/OS implementation, the compiler checks the syntax of the entire
template class definition when the TEMPINC files are being compiled if the TEMPINC
compiler option is used, or during the original compiler pass if the NOTEMPINC
compiler option is used. Any errors in the class definition are flagged. The compiler

376 C/C++ Language Reference

|
|
|
|



does not generate code or data until it requires a specialization. At that point it
generates appropriate code and data for the specialization by using the argument
list supplied.

v “Class Templates” on page 374

Static Data Members and Templates

Each class template instantiation has its own copy of any static data
members. The static declaration can be of template argument type or of any
defined type.

You must separately define static members. The following example demonstrates
this:
template <class T> class K
{
public:

static T x;
};
template <class T> T K<T> ::x;

int main()
{

K<int>::x = 0;
}

The statement template<class T> T K<T>::x defines the static member of class T,
while the statement in the main() function initializes the data member for K.

v “Static Members” on page 303

Member Functions of Class Templates

You may define a template member function outside of its class template
definition.

When you call a member function of a class template specialization, the compiler
will use the template arguments that you used to generate the class template. The
following example demonstrates this:
template<class T> class X {

public:
T operator+(T);

};

template<class T> T X<T>::operator+(T arg1) {
return arg1;

};

int main() {
X<char> a;
X<int> b;
a +'z';
b + 4;

}
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The overloaded addition operator has been defined outside of class X. The
statement a + 'z' is equivalent to a.operator+('z'). The statement b + 4 is
equivalent to b.operator+(4).

v “Member Functions” on page 295

Friends and Templates

There are four kinds of relationships between classes and their friends
when templates are involved:
v One-to-many: A non-template function may be a friend to all template class

instantiations.
v Many-to-one: All instantiations of a template function may be friends to a regular

non-template class.
v One-to-one: A template function instantiated with one set of template arguments

may be a friend to one template class instantiated with the same set of template
arguments. This is also the relationship between a regular non-template class
and a regular non-template friend function.

v Many-to-many: All instantiations of a template function may be a friend to all
instantiations of the template class.

The following example demonstrates these relationships:
class B{

template<class V> friend int j();
}

template<class S> g();

template<class T> class A {
friend int e();
friend int f(T);
friend int g<T>();
template<class U> friend int h();

};
v Function e() has a one-to-many relationship with class A. Function e() is a friend

to all instantiations of class A.
v Function f() has a one-to-one relationship with class A. The compiler will give

you a warning for this kind of declaration similar to the following:
The friend function declaration "f" will cause an error when the enclosing
template class is instantiated with arguments that declare a friend function
that does not match an existing definition. The function declares only one
function because it is not a template but the function type depends on
one or more template parameters.

v Function g() has a one-to-one relationship with class A. Function g() is a
function template. It must be declared before here or else the compiler will not
recognize g<T> as a template name. For each instantiation of A there is one
matching instantiation of g(). For example, g<int> is a friend of A<int>.

v Function h() has a many-to-many relationship with class A. Function h() is a
function template. For all instantiations of A all instantiations of h() are friends.

v Function j() has a many-to-one relationship with class B.

These relationships also apply to friend classes.

v “Friends” on page 310
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Function Templates

A function template defines how a group of functions can be generated.

A non-template function is not related to a function template, even though the
non-template function may have the same name and parameter profile as those of
a specialization generated from a template. A non-template function is never
considered to be a specialization of a function template.

The following example implements the QuickSort algorithm with a function template
named quicksort:
#include <iostream>
#include <cstdlib>
using namespace std;

template<class T> void quicksort(T a[], const int& leftarg, const int& rightarg) {

if (leftarg < rightarg) {

T pivotvalue = a[leftarg];
int left = leftarg - 1;
int right = rightarg + 1;

for(;;) {

while (a[--right] > pivotvalue);
while (a[++left] < pivotvalue);

if (left >= right) break;

T temp = a[right];
a[right] = a[left];
a[left] = temp;

}

int pivot = right;
quicksort(a, leftarg, pivot);
quicksort(a, pivot + 1, rightarg);
}

}

int main(void) {
int sortme[10];

for (int i = 0; i < 10; i++) {
sortme[i] = rand();
cout << sortme[i] << " ";

};
cout << endl;

quicksort<int>(sortme, 0, 10 - 1);

for (int i = 0; i < 10; i++) cout << sortme[i] << "
";
cout << endl;
return 0;

}

The above example will have output similar to the following:
16838 5758 10113 17515 31051 5627 23010 7419 16212 4086
4086 5627 5758 7419 10113 16212 16838 17515 23010 31051
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This QuickSort algorithm will sort an array of type T (whose relational and
assignment operators have been defined). The template function takes one
template argument and three function arguments:

v the type of the array to be sorted, T

v the name of the array to be sorted, a

v the lower bound of the array, leftarg

v the upper bound of the array, rightarg

In the above example, you can also call the quicksort() template function with the
following statement:

quicksort(sortme, 0, 10 - 1);

You may omit any template argument if the compiler can deduce it by the usage
and context of the template function call. In this case, the compiler deduces that
sortme is an array of type int.

v “Template Argument Deduction”

Template Argument Deduction

When you call a template function, you may omit any template argument
that the compiler can determine or deduce by the usage and context of that
template function call.

The compiler tries to deduce a template argument by comparing the type of the
corresponding template parameter with the type of the argument used in the
function call. The two types that the compiler compares (the template parameter
and the argument used in the function call) must be of a certain structure in order
for template argument deduction to work. The following lists these type structures:
T
const T
volatile T
T&
T*
T[10]
A<T>
C(*)(T)
T(*)()
T(*)(U)
T C::*
C T::*
T U::*
T (C::*)()
C (T::*)()
D (C::*)(T)
C (T::*)(U)
T (C::*)(U)
T (U::*)()
T (U::*)(V)
E[10][i]
B<i>
TT<T>
TT<i>
TT<C>
v T, U, and V represent a template type argument
v 10 represents any integer constant
v i represents a template non-type argument
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v [i] represents an array bound of a reference or pointer type, or a non-major
array bound of a normal array.

v TT represents a template template argument
v (T), (U), and (V) represents an argument list that has at least one template type

argument
v () represents an argument list that has no template arguments
v <T> represents a template argument list that has at least one template type

argument
v <i> represents a template argument list that has at least one template non-type

argument
v <C> represents a template argument list that has no template arguments

dependent on a template parameter

The following example demonstrates the use of each of these type structures. The
example declares a template function using each of the above structures as an
argument. These functions are then called (without template arguments) in order of
declaration. The example outputs the same list of type structures:
#include <iostream>
using namespace std;

template<class T> class A { };
template<int i> class B { };

class C {
public:

int x;
};

class D {
public:

C y;
int z;

};

template<class T> void f (T) {cout << "T" << endl; };
template<class T> void f1(const T) {cout << "const T" << endl; };
template<class T> void f2(volatile T) {cout << "volatile T" << endl; };
template<class T> void g (T*) {cout << "T*" << endl; };
template<class T> void g (T&) {cout << "T&" << endl; };
template<class T> void g1(T[10]) {cout << "T[10]" << endl;};
template<class T> void h1(A<T>) {cout << "A<T>" << endl; };

void test_1() {
A<char> a;
C c;

f(c); f1(c); f2(c);
g(c); g(&c); g1(&c);
h1(a);

}

template<class T> void j(C(*)(T)) {cout << "C(*) (T)" << endl; };
template<class T> void j(T(*)()) {cout << "T(*) ()" << endl; }
template<class T, class U> void j(T(*)(U)) {cout << "T(*) (U)" << endl; };

void test_2() {
C (*c_pfunct1)(int);
C (*c_pfunct2)(void);
int (*c_pfunct3)(int);
j(c_pfunct1);
j(c_pfunct2);
j(c_pfunct3);

}
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template<class T> void k(T C::*) {cout << "T C::*" << endl; };
template<class T> void k(C T::*) {cout << "C T::*" << endl; };
template<class T, class U> void k(T U::*) {cout << "T U::*" << endl; };

void test_3() {
k(&C::x);
k(&D::y);
k(&D::z);

}

template<class T> void m(T (C::*)() ) {cout << "T (C::*)()" << endl; };
template<class T> void m(C (T::*)() ) {cout << "C (T::*)()" << endl; };
template<class T> void m(D (C::*)(T)) {cout << "D (C::*)(T)" << endl; };
template<class T, class U> void m(C (T::*)(U)) {cout << "C (T::*)(U)" << endl; };
template<class T, class U> void m(T (C::*)(U)) {cout << "T (C::*)(U)" << endl; };
template<class T, class U> void m(T (U::*)() ) {cout << "T (U::*)()" << endl; };
template<class T, class U, class V> void m(T (U::*)(V)) {cout << "T (U::*)(V)" << endl; };

void test_4() {
int (C::*f_membp1)(void);
C (D::*f_membp2)(void);
D (C::*f_membp3)(int);
m(f_membp1);
m(f_membp2);
m(f_membp3);

C (D::*f_membp4)(int);
int (C::*f_membp5)(int);
int (D::*f_membp6)(void);
m(f_membp4);
m(f_membp5);
m(f_membp6);

int (D::*f_membp7)(int);
m(f_membp7);

}

template<int i> void n(C[10][i]) {cout << "E[10][i]" << endl; };
template<int i> void n(B<i>) {cout << "B<i>" << endl; };

void test_5() {
C array[10][20];
n(array);
B<20> b;
n(b);

}

template<template<class> class TT, class T> void p1(TT<T>) {cout << "TT<T>" << endl; };
template<template<int> class TT, int i> void p2(TT<i>) {cout << "TT<i>" << endl; };
template<template<class> class TT> void p3(TT<C>) {cout << "TT<C>" << endl; };

void test_6() {
A<char> a;
B<20> b;
A<C> c;
p1(a);
p2(b);
p3(c);

}

int main() { test_1(); test_2(); test_3(); test_4(); test_5(); test_6(); }

v “Deducing Type Template Arguments” on page 383
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v “Deducing Non-Type Template Arguments” on page 384

Deducing Type Template Arguments
The compiler can deduce template arguments from a type composed of

several of the listed type structures. The following example demonstrates template
argument deduction for a type composed of several type structures:
template<class T> class Y { };

template<class T, int i> class X {
public:

Y<T> f(char[20][i]) { return x; };
Y<T> x;

};

template<template<class> class T, class U, class V, class W, int i>
void g( T<U> (V::*)(W[20][i]) ) { };

int main()
{

Y<int> (X<int, 20>::*p)(char[20][20]) = &X<int, 20>::f;
g(p);

}

The type Y<int> (X<int, 20>::*p)(char[20][20])T<U> (V::*)(W[20][i]) is based
on the type structure T (U::*)(V):
v T is Y<int>
v U is X<int, 20>
v V is char[20][20]

If you qualify a type with the class to which that type belongs, and that class (a
nested name specifier) depends on a template parameter, the compiler will not
deduce a template argument for that parameter. If a type contains a template
argument that cannot be deduced for this reason, all template arguments in that
type will not be deduced. The following example demonstrates this:
template<class T, class U, class V>

void h(typename Y<T>::template Z<U>, Y<T>, Y<V>) { };

int main() {
Y<int>::Z<char> a;
Y<int> b;
Y<float> c;

h<int, char, float>(a, b, c);
h<int, char>(a, b, c);
// h<int>(a, b, c);

}

The compiler will not deduce the template arguments T and U in typename
Y<T>::template Z<U> (but it will deduce the T in Y<T>). The compiler would not allow
the template function call h<int>(a, b, c) because U is not deduced by the
compiler.

The compiler can deduce a function template argument from a pointer to function or
pointer to member function argument given several overloaded function names.
However, none of the overloaded functions may be function templates, nor can
more than one overloaded function match the required type. The following example
demonstrates this:
template<class T> void f(void(*) (T,int)) { };

template<class T> void g1(T, int) { };
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void g2(int, int) { };
void g2(char, int) { };

void g3(int, int, int) { };
void g3(float, int) { };

int main() {
// f(&g1);
// f(&g2);

f(&g3);
}

The compiler would not allow the call f(&g1) because g1() is a function template.
The compiler would not allow the call f(&g2) because both functions named g2()
match the type required by f().

The compiler cannot deduce a template argument from the type of a default
argument. The following example demonstrates this:
template<class T> void f(T = 2, T = 3) { };

int main() {
f(6);

// f();
f<int>();

}

The compiler allows the call f(6) because the compiler deduces the template
argument (int) by the value of the function call’s argument. The compiler would not
allow the call f() because the compiler cannot deduce template argument from the
default arguments of f().

The compiler cannot deduce a template type argument from the type of a non-type
template argument. For example, the compiler will not allow the following:
template<class T, T i> void f(int[20][i]) { };

int main() {
int a[20][30];
f(a);

}

The compiler cannot deduce the type of template parameter T.

v “Template Argument Deduction” on page 380

Deducing Non-Type Template Arguments
The compiler cannot deduce the value of a major array bound unless the

bound refers to a reference or pointer type. Major array bounds are not part of
function parameter types. The following code demonstrates this:
template<int i> void f(int a[10][i]) { };
template<int i> void g(int a[i]) { };
template<int i> void h(int (&a)[i]) { };

int main () {
int b[10][20];
int c[10];
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f(b);
// g(c);
h(c);

}

The compiler would not allow the call g(c); the compiler cannot deduce template
argument i.

The compiler cannot deduce the value of a non-type template argument used in an
expression in the template function’s parameter list. The following example
demonstrates this:
template<int i> class X { };

template<int i> void f(X<i - 1>) { };

int main () {
X<0> a;
f<1>(a);
// f(a);

}

In order to call function f() with object a, the function must accept an argument of
type X<0>. However, the compiler cannot deduce that the template argument i must
be equal to 1 in order for the function template argument type X<i - 1> to be
equivalent to X<0>. Therefore the compiler would not allow the function call f(a).

If you want the compiler to deduce a non-type template argument, the type of the
parameter must match exactly the type of value used in the function call. For
example, the compiler will not allow the following:
template<int i> class A { };
template<short d> void f(A<d>) { };

int main() {
A<1> a;
f(a);

}

The compiler will not convert int to short when the example calls f().

However, deduced array bounds may be of any integral type.

v “Template Argument Deduction” on page 380

Overloading Function Templates

You may overload a function template either by a non-template function or
by another function template.

If you call the name of an overloaded function template, the compiler will try to
deduce its template arguments and check its explicitly declared template
arguments. If successful, it will instantiate a function template specialization, then
add this specialization to the set of candidate functions used in overload resolution.
The compiler proceeds with overload resolution, choosing the most appropriate
function from the set of candidate functions. Non-template functions take
precedence over template functions. The following example describes this:
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#include <iostream>
using namespace std;

template<class T> void f(T x, T y) { cout << "Template" << endl; }

void f(int w, int z) { cout << "Non-template" << endl; }

int main() {
f( 1 , 2 );
f('a', 'b');
f( 1 , 'b');

}

The following is the output of the above example:
Non-template
Template
Non-template

The function call f(1, 2) could match the argument types of both the template
function and the non-template function. Because in overload resolution
non-template functions take precedence, the non-template function is called.

The function call f('a', 'b') can only match the argument types of the template
function. The template function is called.

Argument deduction fails for the function call f(1, 'b'); the compiler does not
generate any template function specialization and overload resolution does not take
place. The non-template function resolves this function call after using the standard
conversion from char to int for the function argument 'b'.

v “Overload Resolution” on page 280

Partial Ordering of Function Templates

A function template specialization might be ambiguous because template
argument deduction might associate the specialization with more than one of the
overloaded definitions. The compiler will then choose the definition that is the most
specialized. This process of selecting a function template definition is called partial
ordering.

A template X is more specialized than a template Y if every argument list that
matches the one specified by X also matches the one specified by Y, but not the
other way around. The following example demonstrates partial ordering:
template<class T> void f(T) { }
template<class T> void f(T*) { }
template<class T> void f(const T*) { }

template<class T> void g(T) { }
template<class T> void g(T&) { }

template<class T> void h(T) { }
template<class T> void h(T, ...) { }

int main() {
const int *p;
f(p);
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int q;
// g(q);
// h(q);
}

The declaration template<class T> void f(const T*) is more specialized than
template<class T> void f(T*). Therefore, the function call f(p) calls
template<class T> void f(const T*). However, neither void g(T) nor void g(T&)
is more specialized than the other. Therefore, the function call g(q) would be
ambiguous.

Ellipses do not affect partial ordering. Therefore, the function call h(q) would also
be ambiguous.

The compiler uses partial ordering in the following cases:
v Calling a function template specialization that requires overload resolution.
v Taking the address of a function template specialization.
v When a friend function declaration, an explicit instantiation, or explicit

specialization refers to a function template specialization.
v Determining the appropriate deallocation function that is also a function template

for a given placement operator new.

v “Template Specialization” on page 390

v “C++ new Operator” on page 119

Template Instantiation

The act of creating a new definition of a function, class, or member of a
class from a template declaration and one or more template arguments is called
template instantiation. The definition created from a template instantiation is called a
specialization.

v “Template Specialization” on page 390

Implicit Instantiation

Unless a template specialization has been explicitly instantiated or explicitly
specialized, the compiler will generate a specialization for the template only when it
needs the definition. This is called implicit instantiation.

If the compiler must instantiate a class template specialization and the template is
declared, you must also define the template.

For example, if you declare a pointer to a class, the definition of that class is not
needed and the class will not be implicitly instantiated. The following example
demonstrates when the compiler instantiates a template class:
template<class T> class X {

public:
X* p;
void f();
void g();

};
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X<int>* q;
X<int> r;
X<float>* s;
r.f();
s->g();

The compiler requires the instantiation of the following classes and functions:
v X<int> when the object r is declared
v X<int>::f() at the member function call r.f()
v X<float> and X<float>::g() at the class member access function call s->g()

Therefore, the functions X<T>::f() and X<T>::g() must be defined in order for the
above example to compile. (The compiler will use the default constructor of class X
when it creates object r.) The compiler does not require the instantiation of the
following definitions:
v class X when the pointer p is declared
v X<int> when the pointer q is declared
v X<float> when the pointer s is declared

The compiler will implicitly instantiate a class template specialization if it is involved
in pointer conversion or pointer to member conversion. The following example
demonstrates this:
template<class T> class B { };
template<class T> class D : public B<T> { };

void g(D<double>* p, D<int>* q)
{

B<double>* r = p;
delete q;

}

The assignment B<double>* r = p converts p of type D<double>* to a type of
B<double>*; the compiler must instantiate D<double>. The compiler must
instantiate D<int> when it tries to delete q.

If the compiler implicitly instantiates a class template that contains static members,
those static members are not implicitly instantiated. The compiler will instantiate a
static member only when the compiler needs the static member’s definition. Every
instantiated class template specialization has its own copy of static members. The
following example demonstrates this:
template<class T> class X {
public:

static T v;
};

template<class T> T X<T>::v = 0;

X<char*> a;
X<float> b;
X<float> c;

Object a has a static member variable v of type char*. Object b has a static variable
v of type float. Objects b and c share the single static data member v.

An implicitly instantiated template is in the same namespace where you defined the
template.

If a function template or a member function template specialization is involved with
overload resolution, the compiler implicitly instantiates a declaration of the
specialization.
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v “Template Instantiation” on page 387

Explicit Instantiation

You can explicitly tell the compiler when it should generate a definition from
a template. This is called explicit instantiation.

Syntax — Explicit Instantiation Declaration

�� template template_declaration ��

The following are examples of explicit instantiations:
template<class T> class Array { void mf(); };
template class Array<char>; // explicit instantiation
template void Array<int>::mf(); // explicit instantiation

template<class T> void sort(Array<T>& v) { }
template void sort(Array<char>&); // explicit instantiation

namespace N {
template<class T> void f(T&) { }

}

template void N::f<int>(int&);
// The explicit instantiation is in namespace N.

int* p = 0;
template<class T> T g(T = &p);
template char g(char); // explicit instantiation

template <class T> class X {
private:

T v(T arg) { return arg; };
};

template int X<int>::v(int); // explicit instantiation

template<class T> T g(T val) {return val;}
template<class T> void Array<T>::mf() { }

A template declaration must be in scope at the point of instantiation of the
template’s explicit instantiation. An explicit instantiation of a template specialization
is in the same namespace where you defined the template.

Access checking rules do not apply to names in explicit instantiations. Template
arguments and names in a declaration of an explicit instantiation may be private
types or objects. In the above example, the compiler allows the explicit instantiation
template int X<int>::v(int) even though the member function is declared private.

The compiler does not use default arguments when you explicitly instantiate a
template. In the above example the compiler allows the explicit instantiation
template char g(char) even though the default argument is an address of type int.

v “Template Instantiation” on page 387
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Template Specialization

The act of creating a new definition of a function, class, or member of a
class from a template declaration and one or more template arguments is called
template instantiation. The definition created from a template instantiation is called a
specialization. A primary template is the template that is being specialized.

v “Template Instantiation” on page 387

Explicit Specialization

When you instantiate a template with a given set of template arguments the
compiler generates a new definition based on those template arguments. You can
override this behavior of definition generation. You can instead specify the definition
the compiler uses for a given set of template arguments. This is called explicit
specialization. You can explicitly specialize any of the following:
v Function or class template
v Member function of a class template
v Static data member of a class template
v Member class of a class template
v Member function template of a class template
v Member class template of a class template

Syntax — Explicit Specialization Declaration

�� template < > declaration_name declaration_body
< template_argument_list >

��

The template<> prefix indicates that the following template declaration takes no
template parameters. The declaration_name is the name of a previously declared
template. Note that you can forward-declare an explicit specialization so the
declaration_body is optional, at least until the specialization is referenced.

The following example demonstrates explicit specialization:
using namespace std;

template<class T = float, int i = 5> class A
{

public:
A();
int value;

};

template<> class A<> { public: A(); };
template<> class A<double, 10> { public: A(); };

template<class T, int i> A<T, i>::A() : value(i) {
cout << "Primary template, "

<< "non-type argument is " << value << endl;
}

A<>::A() {
cout << "Explicit specialization "

<< "default arguments" << endl;
}
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A<double, 10>::A() {
cout << "Explicit specialization "

<< "<double, 10>" << endl;
}

int main() {
A<int,6> x;
A<> y;
A<double, 10> z;

}

The following is the output of the above example:
Primary template non-type argument is: 6
Explicit specialization default arguments
Explicit specialization <double, 10>

This example declared two explicit specializations for the primary template (the
template which is being specialized) class A. Object x uses the constructor of the
primary template. Object y uses the explicit specialization A<>::A(). Object z uses
the explicit specialization A<double, 10>::A().

v “Function Templates” on page 379

v “Class Templates” on page 374

v “Member Functions of Class Templates” on page 377

v “Static Data Members and Templates” on page 377

Definition and Declaration of Explicit Specializations
The definition of an explicitly specialized class is unrelated to the definition

of the primary template. You do not have to define the primary template in order to
define the specialization (nor do you have to define the specialization in order to
define the primary template). For example, the compiler will allow the following:
template<class T> class A;
template<> class A<int>;

template<> class A<int> { /* ... */ };

The primary template is not defined, but the explicit specialization is.

You can use the name of an explicit specialization that has been declared but not
defined the same way as an incompletely defined class. The following example
demonstrates this:
template<class T> class X { };
template<> class X<char>;
X<char>* p;
X<int> i;
// X<char> j;

The compiler does not allow the declaration X<char> j because the explicit
specialization of X<char> is not defined.

v “Explicit Specialization” on page 390
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Explicit Specialization and Scope
A declaration of a primary template must be in scope at the point of

declaration of the explicit specialization. In other words, an explicit specialization
declaration must appear after the declaration of the primary template. For example,
the compiler will not allow the following:
template<> class A<int>;
template<class T> class A;

An explicit specialization is in the same namespace as the definition of the primary
template.

v “Explicit Specialization” on page 390

Class Members of Explicit Specializations
A member of an explicitly specialized class is not implicitly instantiated from

the member declaration of the primary template. You have to explicitly define
members of a class template specialization. You define members of an explicitly
specialized template class as you would normal classes, without the template<>
prefix. In addition, you can define the members of an explicit specialization inline;
no special template syntax is used in this case. The following example
demonstrates a class template specialization:
template<class T> class A {

public:
void f(T);

};

template<> class A<int> {
public:

int g(int);
};

int A<int>::g(int arg) { return 0; }

int main() {
A<int> a;
a.g(1234);

}

The explicit specialization A<int> contains the member function g(), which the
primary template does not.

If you explicitly specialize a template, a member template, or the member of a class
template, then you must declare this specialization before that specialization is
implicitly instantiated. For example, the compiler will not allow the following code:
template<class T> class A { };

void f() { A<int> x; }
template<> class A<int> { };

int main() { f(); }

The compiler will not allow the explicit specialization template<> class A<int> { };
because function f() uses this specialization (in the construction of x) before the
specialization.
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The unordered incremental compiler allows the above example. In this case
the compiler will use the explicit specialization when it calls function f().

v “Explicit Specialization” on page 390

Explicit Specialization of Function Templates
In a function template specialization, a template argument is optional if the

compiler can deduce it from the type of the function arguments. The following
example demonstrates this:
template<class T> class X { };
template<class T> void f(X<T>);
template<> void f(X<int>);

The explicit specialization template<> void f(X<int>) is equivalent to template<>
void f<int>(X<int>).

You cannot specify default function arguments in a declaration or a definition for any
of the following:
v Explicit specialization of a function template
v Explicit specialization of a member function template

For example, the compiler will not allow the following code:
template<class T> void f(T a) { };
template<> void f<int>(int a = 5) { };

template<class T> class X {
void f(T a) { }

};
template<> void X<int>::f(int a = 10) { };

v “Explicit Specialization” on page 390

v “Function Templates” on page 379

Explicit Specialization of Members of Class Templates
Each instantiated class template specialization has its own copy of any

static members. You may explicitly specialize static members. The following
example demonstrates this:
template<class T> class X {
public:

static T v;
static void f(T);

};

template<class T> T X<T>::v = 0;
template<class T> void X<T>::f(T arg) { v = arg; }

template<> char* X<char*>::v = "Hello";
template<> void X<float>::f(float arg) { v = arg * 2; }

int main() {
X<char*> a, b;
X<float> c;
c.f(10);

}
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This code explicitly specializes the initialization of static data member X::v to point
to the string "Hello" for the template argument char*. The function X::f() is
explicitly specialized for the template argument float. The static data member v in
objects a and b point to the same string, "Hello". The value of c.v is equal to 20
after the call function call c.f(10).

You can nest member templates within many enclosing class templates. If you
explicitly specialize a template nested within several enclosing class templates, you
must prefix the declaration with template<> for every enclosing class template you
specialize. You may leave some enclosing class templates unspecialized, however
you cannot explicitly specialize a class template unless its enclosing class
templates are also explicitly specialized. The following example demonstrates
explicit specialization of nested member templates:
#include <iostream>
using namespace std;

template<class T> class X {
public:

template<class U> class Y {
public:

template<class V> void f(U,V);
void g(U);

};
};

template<class T> template<class U> template<class V>
void X<T>::Y<U>::f(U, V) { cout << "Template 1" << endl; }

template<class T> template<class U>
void X<T>::Y<U>::g(U) { cout << "Template 2" << endl; }

template<> template<>
void X<int>::Y<int>::g(int) { cout << "Template 3" << endl; }

template<> template<> template<class V>
void X<int>::Y<int>::f(int, V) {cout << "Template 4" << endl; }

template<> template<> template<>
void X<int>::Y<int>::f<int>(int, int) { cout << "Template 5" << endl; }

// template<> template<class U> template<class V>
// void X<char>::Y<U>::f(U, V) { cout << "Template 6" << endl; }

// template<class T> template<>
// void X<T>::Y<float>::g(float) { cout << "Template 7" << endl; }

int main() {
X<int>::Y<int> a;
X<char>::Y<char> b;
a.f(1, 2);
a.f(3, 'x');
a.g(3);
b.f('x', 'y');
b.g('z');

}

The following is the output of the above program:
Template 5
Template 4
Template 3
Template 1
Template 2
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v The compiler would not allow the template specialization definition that would
output "Template 6" because it is attempting to specialize a member (function
f()) without specialization its containing class (Y).

v The compiler would not allow the template specialization definition that would
output "Template 7" because the enclosing class of class Y (which is class X) is
not explicitly specialized.

A friend declaration cannot declare an explicit specialization.

v “Explicit Specialization” on page 390

v “Static Data Members and Templates” on page 377

Partial Specialization

When you instantiate a class template, the compiler creates a definition
based on the template arguments you have passed. Alternatively, if all those
template arguments match those of an explicit specialization, the compiler uses the
definition defined by the explicit specialization.

A partial specialization is a generalization of explicit specialization. An explicit
specialization only has a template argument list. A partial specialization has both a
template argument list and a template parameter list. The compiler uses the partial
specialization if its template argument list matches a subset of the template
arguments of a template instantiation. The compiler will then generate a new
definition from the partial specialization with the rest of the unmatched template
arguments of the template instantiation.

You cannot partially specialize function templates.

Syntax — Partial Specialization

�� template < template_parameter_list > declaration_name < template_argument_list > declaration_body ��

The declaration_name is a name of a previously declared template. Note that you
can forward-declare a partial specialization so that the declaration_body is optional.

The following demonstrates the use of partial specializations:
#include <iostream>
using namespace std;

template<class T, class U, int I> struct X
{ void f() { cout << "Primary template" << endl; } };

template<class T, int I> struct X<T, T*, I>
{ void f() { cout << "Partial specialization 1" << endl;
} };

template<class T, class U, int I> struct X<T*, U, I>
{ void f() { cout << "Partial specialization 2" << endl;
} };

template<class T> struct X<int, T*, 10>
{ void f() { cout << "Partial specialization 3" << endl;
} };

template<class T, class U, int I> struct X<T, U*, I>
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{ void f() { cout << "Partial specialization 4" << endl;
} };

int main() {
X<int, int, 10> a;
X<int, int*, 5> b;
X<int*, float, 10> c;
X<int, char*, 10> d;
X<float, int*, 10> e;

// X<int, int*, 10> f;
a.f(); b.f(); c.f(); d.f(); e.f();

}

The following is the output of the above example:
Primary template
Partial specialization 1
Partial specialization 2
Partial specialization 3
Partial specialization 4

The compiler would not allow the declaration X<int, int*, 10> f because it can
match template struct X<T, T*, I>, template struct X<int, T*, 10>, or
template struct X<T, U*, I>, and none of these declarations are a better match
than the others.

Each class template partial specialization is a separate template. You must provide
definitions for each member of a class template partial specialization.

v “Template Specialization” on page 390

Template Parameter and Argument Lists of Partial
Specializations

Primary templates do not have template argument lists; this list is implied in
the template parameter list.

Template parameters specified in a primary template but not used in a partial
specialization are omitted from the template parameter list of the partial
specialization. The order of a partial specialization’s argument list is the same as
the order of the primary template’s implied argument list.

In a template argument list of a partial template parameter, you cannot have an
expression that involves non-type arguments unless that expression is only an
identifier. In the following example, the compiler will not allow the first partial
specialization, but will allow the second one:
template<int I, int J> class X { };

// Invalid partial specialization
template<int I> class <I * 4, I + 3> { };

// Valid partial specialization
template <int I> class <I, I> { };

The type of a non-type template argument cannot depend on a template parameter
of a partial specialization. The compiler will not allow the following partial
specialization:
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template<class T, T i> class X { };

// Invalid partial specialization
template<class T> class X<T, 25> { };

A partial specialization’s template argument list cannot be the same as the list
implied by the primary template.

You cannot have default values in the template parameter list of a partial
specialization.

v “Template Parameters” on page 368

v “Template Arguments” on page 370

Matching of Class Template Partial Specializations
The compiler determines whether to use the primary template or one of its

partial specializations by matching the template arguments of the class template
specialization with the template argument lists of the primary template and the
partial specializations:
v If the compiler finds only one specialization, then the compiler generates a

definition from that specialization.
v If the compiler finds more than one specialization, then the compiler tries to

determine which of the specializations is the most specialized. A template X is
more specialized than a template Y if every argument list that matches the one
specified by X also matches the one specified by Y, but not the other way around.
If the compiler cannot find the most specialized specialization, then the use of the
class template is ambiguous; the compiler will not allow the program.

v If the compiler does not find any matches, then the compiler generates a
definition from the primary template.

v “Partial Specialization” on page 395

Name Binding and Dependent Names

Name binding is the process of finding the declaration for each name that is
explicitly or implicitly used in a template. The compiler may bind a name in the
definition of a template, or it may bind a name at the instantiation of a template.

A dependent name is a name that depends on the type or the value of a template
parameter. For example:
template<class T> class U : A<T>
{

typename T::B x;
void f(A<T>& y)
{

*y++;
}

};

The dependent names in this example are the base class A<T>, the type name
T::B, and the variable y.
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The compiler binds dependent names when a template is instantiated. The compiler
binds non-dependent names when a template is defined. For example:
void f(double) { cout << "Function f(double)" << endl; }

template<class T> void g(T a) {
f(123);
h(a);

}

void f(int) { cout << "Function f(int)" << endl; }
void h(double) { cout << "Function h(double)" << endl; }

void i() {
extern void h(int);
g<int>(234);

}

void h(int) { cout << "Function h(int)" << endl; }

The following is the output if you call function i():
Function f(double)
Function h(double)

The unordered incremental compiler will not give this result; the compiler
will call the best match of the overloaded functions regardless of their location.

The point of definition of a template is located immediately before its definition. In
this example, the point of definition of the function template g(T) is located
immediately before the keyword template. Because the function call f(123) does
not depend on a template argument, the compiler will consider names declared
before the definition of function template g(T). Therefore, the call f(123) will call
f(double). Although f(int) is a better match, it is not in scope at the point of
definition of g(T).

The point of instantiation of a template is located immediately before the declaration
that encloses its use. In this example, the point of instantiation of the call to
g<int>(234) is located immediately before i(). Because the function call h(a)
depends on a template argument, the compiler will consider names declared before
the instantiation of function template g(T). Therefore, the call h(a) will call
h(double). It will not consider h(int), because this function was not in scope at the
point of instantiation of g<int>(234).

Point of instantiation binding implies the following:
v A template parameter cannot depend on any local name or class member.
v An unqualified name in a template cannot depend on a local name or class

member.

v “Template Instantiation” on page 387

The Keyword typename

Use the keyword typename if you have a qualified name that refers to a
type and depends on a template parameter. Only use the keyword typename in
template declarations and definitions. The following example illustrates the use of
the keyword typename:
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template<class T> class A
{

T::x(y);
typedef char C;
A::C d;

}

The statement T::x(y) is ambiguous. It could be a call to function x() with a
nonlocal argument y, or it could be a declaration of variable y with type T::x. C++
will interpret this statement as a function call. In order for the compiler to interpret
this statement as a declaration, you would add the keyword typename to the
beginning of it. The statement A::C d; is ill-formed. The class A also refers to A<T>
and thus depends on a template parameter. You must add the keyword typename
to the beginning of this declaration:

typename A::C d;

You can also use the keyword typename in place of the keyword class in template
parameter declarations.

v “Template Parameters” on page 368

The Keyword template as Qualifier

Use the keyword template as a qualifier to distinguish member templates
from other names. The following example illustrates when you must use template
as a qualifier:
class A
{

public:
template<class T> T function_m() { };

};

template<class U> void function_n(U argument)
{

char object_x = argument.function_m<char>();
}

The declaration char object_x = argument.function_m<char>(); is ill-formed. The
compiler assumes that the < is a less-than operator. In order for the compiler to
recognize the function template call, you must add the template quantifier:
char object_x = argument.template function_m<char>();

If the name of a member template specialization appears after a ., ->, or ::
operator, and that name has explicitly qualified template parameters, prefix the
member template name with the keyword template. The following example
demonstrates this use of the keyword template:
#include <iostream>
using namespace std;

class X {
public:

template <int j> struct S {
void h() {

cout << "member template's member function: " << j << endl;
}

};
template <int i> void f() {
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cout << "Primary: " << i << endl;
}

};

template<> void X::f<20>() {
cout << "Specialized, non-type argument = 20" << endl;

}

template<class T> void g(T* p) {
p->template f<100>();
p->template f<20>();
typename T::template S<40> s; // use of scope operator on a member template
s.h();

}

int main()
{

X temp;
g(&temp);

}

The following is the output of the above example:
Primary: 100
Specialized, non-type argument = 20
member template's member function: 40

If you do not use the keyword template in these cases, the compiler will interpret
the < as a less-than operator. For example, the following line of code is ill-formed:
p->f<100>();

The compiler interprets f as a non-template member, and the < as a less-than
operator.

v “Chapter 16. Templates” on page 367
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Chapter 17. Exception Handling

Exception handling is a mechanism that separates code that detects and
handles exceptional circumstances from the rest of your program. Note that an
exceptional circumstance is not necessarily an error.

When a function detects an exceptional situation, you represent this with an object.
This object is called an exception object. In order to deal with the exceptional
situation you throw the exception. This passes control, as well as the exception, to
a designated block of code in a direct or indirect caller of the function that threw the
exception. This block of code is called a handler. In a handler, you specify the types
of exceptions that it may process. The C++ run time, together with the generated
code, will pass control to the first appropriate handler that is able to process the
exception thrown. When this happens, an exception is caught. A handler may
rethrow an exception so it can be caught by another handler.

The exception handling mechanism is made up of the following elements:
v try blocks: a block of code that may throw an exception that you want to handle

with special processing
v catch blocks or handlers: a block of code that is executed when a try block

encounters an exception
v throw expression: indicates when your program encounters an exception
v exception specifications: specify which exceptions (if any) a function may throw
v unexpected() function: called when a function throws an exception not specified

by an exception specification
v terminate() function: called for exceptions that are not caught

v “The try Keyword”
v “catch Blocks” on page 403
v “The throw Expression” on page 409
v “Exception Specifications” on page 412
v “unexpected()” on page 415
v “terminate()” on page 416

The try Keyword

You use a try block to indicate which areas in your program that might throw
exceptions you want to handle immediately. You use a function try block to indicate
that you want to detect exceptions in the entire body of a function.

Syntax — try Block

�� �try { statements } handler ��

Syntax — Function try Block
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�� �try function_body handler
: member_initializer_list

��

The following is an example of a function try block with a member initializer, a
function try block and a try block:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { }

};

class A {
public:

int i;

// A function try block with a member
// initializer
A() try : i(0) {

throw E("Exception thrown in A()");
}
catch (E& e) {

cout << e.error << endl;
}

};

// A function try block
void f() try {

throw E("Exception thrown in f()");
}
catch (E& e) {

cout << e.error << endl;
}

void g() {
throw E("Exception thrown in g()");

}

int main() {
f();

// A try block
try {

g();
}
catch (E& e) {

cout << e.error << endl;
}
A x;

}

The following is the output of the above example:
Exception thrown in f()
Exception thrown in g()
Exception thrown in A()

The constructor of class A has a function try block with a member initializer.
Function f() has a function try block. The main() function contains a try block.
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v “Initializing Base Classes and Members” on page 346

Nested Try Blocks

When try blocks are nested and a throw occurs in a function called by an
inner try block, control is transferred outward through the nested try blocks until the
first catch block is found whose argument matches the argument of the throw
expression.

For example:
try
{

func1();
try
{

func2();
}
catch (spec_err) { /* ... */ }
func3();

}
catch (type_err) { /* ... */ }
// if no throw is issued, control resumes here.

In the above example, if spec_err is thrown within the inner try block (in this case,
from func2()), the exception is caught by the inner catch block, and, assuming this
catch block does not transfer control, func3() is called. If spec_err is thrown after
the inner try block (for instance, by func3()), it is not caught and the function
terminate() is called. If the exception thrown from func2() in the inner try block is
type_err, the program skips out of both try blocks to the second catch block without
invoking func3(), because no appropriate catch block exists following the inner try
block.

You can also nest a try block within a catch block.

v “terminate()” on page 416
v “unexpected()” on page 415
v “Special Exception Handling Functions” on page 415

catch Blocks

The following is the syntax for an exception handler or a catch block:

�� catch ( exception_declaration ) { statements } ��

You can declare a handler to catch many types of exceptions. The allowable objects
that a function can catch are declared in the parentheses following the catch
keyword (the exception_declaration). You can catch objects of the fundamental
types, base and derived class objects, references, and pointers to all of these
types. You can also catch const and volatile types. The exception_declaration
cannot be an incomplete type, or a reference or pointer to an incomplete type other
than one of the following:
v void*
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v const void*
v volatile void*
v const volatile void*

You cannot define a type in an exception_declaration.

You can also use the catch(...) form of the handler to catch all thrown exceptions
that have not been caught by a previous catch block. The ellipsis in the catch
argument indicates that any exception thrown can be handled by this handler.

If an exception is caught by a catch(...) block, there is no direct way to access the
object thrown. Information about an exception caught by catch(...) is very limited.

You can declare an optional variable name if you want to access the thrown object
in the catch block.

A catch block can only catch accessible objects. The object caught must have an
accessible copy constructor.

v “volatile and const Qualifiers” on page 69
v “Member Access” on page 308

Function try block Handlers

The scope and lifetime of the parameters of a function or constructor extend
into the handlers of a function try block. The following example demonstrates this:
void f(int &x) try {

throw 10;
}
catch (const int &i)
{

x = i;
}

int main() {
int v = 0;
f(v);

}

The value of v after f() is called is 10.

A function try block on main() does not catch exceptions thrown in destructors of
objects with static storage duration, or constructors of namespace scope objects.

The following example throws an exception from a destructor of a static object:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { }

};

class A {
public: xA() { throw E("Exception in xA()"); }

};
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class B {
public: xB() { throw E("Exception in xB()"); }

};

int main() try {
cout << "In main" << endl;
static A cow;
B bull;

}
catch (E& e) {

cout << e.error << endl;
}

The following is the output of the above example:
In main
Exception in xB()

The run time will not catch the exception thrown when object cow is destroyed at the
end of the program.

The following example throws an exception from a constructor of a namespace
scope object:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { }

};

namespace N {
class C {
public:

C() {
cout << "In C()" << endl;
throw E("Exception in C()");

}
};

C calf;
};

int main() try {
cout << "In main" << endl;

}
catch (E& e) {

cout << e.error << endl;
}

The following is the output of the above example:
In C()

The compiler will not catch the exception thrown when object calf is created.

In a function try block’s handler, you cannot have a jump into the body of a
constructor or destructor.

A return statement cannot appear in a function try block’s handler of a constructor.
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When the function try block’s handler of an object’s constructor or destructor is
entered, fully constructed base classes and members of that object are destroyed.
The following example demonstrates this:
#include
<iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { };

};

class B {
public:

B() { };
xB() { cout << "xB() called" << endl; };

};

class D : public B {
public:

D();
xD() { cout << "xD() called" << endl; };

};

D::D() try : B() {
throw E("Exception in D()");

}
catch(E& e) {

cout << "Handler of function try block of D(): " << e.error << endl;
};

int main() {
D val;

};

The following is the output of the above example:
xB() called
Handler of function try block of D(): Exception in D()

When the function try block’s handler of D() is entered, the run time first calls the
destructor of the base class of D, which is B. The destructor of D is not called
because val is not fully constructed.

The run time will rethrow an exception at the end of a function try block’s handler of
a constructor or destructor. All other functions will return once they have reached
the end of their function try block’s handler. The following example demonstrates
this:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { };

};

class A {
public:

A() try { throw E("Exception in A()"); }
catch(E& e) { cout << "Handler in A(): " << e.error << endl; }

};
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int f() try {
throw E("Exception in f()");
return 0;

}
catch(E& e) {

cout << "Handler in f(): " << e.error << endl;
return 1;

}

int main() {
int i = 0;
try { A cow; }
catch(E& e) {

cout << "Handler in main(): " << e.error << endl;
}

try { i = f(); }
catch(E& e) {

cout << "Another handler in main(): " << e.error << endl;
}

cout << "Returned value of f(): " << i << endl;
}

The following is the output of the above example:
Handler in A(): Exception in A()
Handler in main(): Exception in A()
Handler in f(): Exception in f()
Returned value of f(): 1

v “The main() Function” on page 162
v “static Storage Class Specifier” on page 42
v “Chapter 10. Namespaces” on page 261
v “Destructors” on page 350

Arguments of catch Blocks

If you specify a class type for the argument of a catch block (the
exception_declaration), the compiler will use a copy constructor to initialize that
argument. If that argument does not have a name, the compiler initializes a
temporary object. The compiler destroys this object when the handler exits.

The ISO C++ definition permits an implementation that eliminates the construction
of such temporary objects in cases in which they are redundant.

The VisualAge C++ compiler takes advantage of this fact to create more
efficient optimized code. Take this into consideration when debugging your
programs, especially for memory problems.

v “Temporary Objects” on page 357

Matching between Exceptions Thrown and Caught

An argument in the catch argument of a handler matches an argument in
the assignment_expression of the throw expression (throw argument) if any of the
following conditions is met:
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v The catch argument type matches the type of the thrown object.
v The catch argument is a public base class of the thrown class object.
v The catch specifies a pointer type, and the thrown object is a pointer type that

can be converted to the pointer type of the catch argument by standard pointer
conversion.

Note: If the type of the thrown object is const or volatile, the catch argument must
also be a const or volatile for a match to occur. However, a const, volatile,
or reference type catch argument can match a nonconstant, nonvolatile, or
nonreference object type. A nonreference catch argument type matches a
reference to an object of the same type.

v “Pointer Conversions” on page 146
v “volatile and const Qualifiers” on page 69
v “References” on page 92
v “Special Exception Handling Functions” on page 415

Order of Catching

If the compiler encounters an exception in a try block, it will try each handler
in order of appearance.

Always place a catch block that catches a derived class before a catch block that
catches the base class of that derived class (following a try block). If a catch block
for objects of a base class is followed by a catch block for objects of a derived
class of that base class, the compiler issues a warning and continues to compile
the program despite the unreachable code in the derived class handler.

A catch block of the form catch(...) must be the last catch block following a try
block or an error occurs. This placement ensures that the catch(...) block does not
prevent more specific catch blocks from catching exceptions intended for them.

If the run time cannot find a matching handler in the current scope, the run time will
continue to find a matching handler in a dynamically surrounding try block. The
following example demonstrates this:
#include <iostream>
using namespace std;

class E {
public:

const char* error;
E(const char* arg) : error(arg) { };

};

class F : public E {
public:

F(const char* arg) : E(arg) { };
};

void f() {
try {

cout << "In try block of f()" << endl;
throw E("Class E exception");

}
catch (F& e) {

cout << "In handler of f()";
cout << e.error << endl;

}
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};

int main() {
try {

cout << "In main" << endl;
f();

}
catch (E& e) {

cout << "In handler of f(): ";
cout << e.error << endl;

};
cout << "Resume execution in main" << endl;

}

The following is the output of the above example:
In try block of main
In try block of f()
In handler of main: Class E exception
Resume execution in main

In function f(), the run time could not find a handler to handle the exception of type
E thrown. The run time finds a matching handler in a dynamically surrounding try
block: the try block in the main() function.

If the run time cannot find a matching handler in the program, it calls the
terminate() function.

v “The try Keyword” on page 401
v “terminate()” on page 416

The throw Expression

You use a throw expression to indicate when your program encounters an
exception.

Syntax — throw Expression

�� throw
assignment_expression

��

The type of assignment_expression cannot be an incomplete type, or a pointer to
an incomplete type other than one of the following:
v void*
v const void*
v volatile void*
v const volatile void*

The assignment_expression is treated the same way as a function argument in a
call or the operand of a return statement.

If the assignment_expression is a class object, that object’s copy constructor and
destructor must be accessible. For example, you cannot throw a class object that
has its copy constructor declared as private.
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v “Incomplete Types” on page 71

Rethrowing an Exception

If a catch block cannot handle the particular exception it has caught, you
can rethrow the exception. The rethrow expression (throw without
assignment_expression) causes the originally thrown object to be rethrown.

Because the exception has already been caught at the scope in which the rethrow
expression occurs, it is rethrown out to the next dynamically enclosing try block.
Therefore, it cannot be handled by catch blocks at the scope in which the rethrow
expression occurred. Any catch blocks for the dynamically enclosing try block have
an opportunity to catch the exception.

The following example demonstrates rethrowing an exception:
#include <iostream>
using namespace std;

struct E {
const char* message;
E() : message("Class E") { }

};

struct E1 : E {
const char* message;
E1() : message("Class E1") { }

};

struct E2 : E {
const char* message;
E2() : message("Class E2") { }

};

void f() {
try {

cout << "In try block of f()" << endl;
cout << "Throwing exception of type E1" << endl;
E1 myException;
throw myException;

}
catch (E2& e) {

cout << "In handler of f(), catch (E2& e)" << endl;
cout << "Exception: " << e.message << endl;
throw;

}
catch (E1& e) {

cout << "In handler of f(), catch (E1& e)" << endl;
cout << "Exception: " << e.message << endl;
throw;

}
catch (E& e) {

cout << "In handler of f(), catch (E& e)" << endl;
cout << "Exception: " << e.message << endl;
throw;

}
}

int main() {
try {

cout << "In try block of main()" << endl;
f();

}
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catch (E2& e) {
cout << "In handler of main(), catch (E2& e)" << endl;
cout << "Exception: " << e.message << endl;

}
catch (...) {

cout << "In handler of main(), catch (...)" << endl;
}

}

The following is the output of the above example:
In try block of main()
In try block of f()
Throwing exception of type E1
In handler of f(), catch (E1& e)
Exception: Class E1
In handler of main(), catch (...)

The try block in the main() function calls function f(). The try block in function f()
throws an object of type E1 named myException. The handler catch (E1 &e)
catches myException. The handler then rethrows myException with the statement
throw to the next dynamically enclosing try block: the try block in the main()
function. The handler catch(...) catches myException.

v “The throw Expression” on page 409

Stack Unwinding

When an exception is thrown and control passes from a try block to a
handler, the C++ run time calls destructors for all automatic objects constructed
since the beginning of the try block. This process is called stack unwinding. The
automatic objects are destroyed in reverse order of their construction. (Automatic
objects are local objects that have been declared auto or register, or not declared
static or extern. An automatic object x is deleted whenever the program exits the
block in which x is declared.)

If an exception is thrown during construction of an object consisting of subobjects or
array elements, destructors are only called for those subobjects or array elements
successfully constructed before the exception was thrown. A destructor for a local
static object will only be called if the object was successfully constructed.

If during stack unwinding a destructor throws an exception and that exception is not
handled, the terminate() function is called. The following example demonstrates
this:
#include <iostream>
using namespace std;

struct E {
const char* message;
E(const char* arg) : message(arg) { }

};

void my_terminate() {
cout << "Call to my_terminate" << endl;

};

struct A {
A() { cout << "In constructor of A" << endl; }
xA() {
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cout << "In destructor of A" << endl;
throw E("Exception thrown in xA()");

}
};

struct B {
B() { cout << "In constructor of B" << endl; }
xB() { cout << "In destructor of B" << endl; }

};

int main() {
set_terminate(my_terminate);

try {
cout << "In try block" << endl;
A a;
B b;
throw("Exception thrown in try block of main()");

}
catch (const char* e) {

cout << "Exception: " << e << endl;
}
catch (...) {

cout << "Some exception caught in main()" << endl;
}

cout << "Resume execution of main()" << endl;
}

The following is the output of the above example:
In try block
In constructor of A
In constructor of B
In destructor of B
In destructor of A
Call to my_terminate

In the try block, two automatic objects are created: a and b. The try block throws an
exception of type const char*. The handler catch (const char* e) catches this
exception. The C++ run time unwinds the stack, calling the destructors for a and b
in reverse order of their construction. The destructor for a throws an exception.
Since there is no handler in the program that can handle this exception, the C++
run time calls terminate(). (The function terminate() calls the function specified as
the argument to set_terminate(). In this example, terminate() has been specified to
call my_terminate().)

v “terminate()” on page 416
v “set_unexpected() and set_terminate()” on page 418

Exception Specifications

C++ provides a mechanism to ensure that a given function is limited to
throwing only a specified list of exceptions. An exception specification at the
beginning of any function acts as a guarantee to the function’s caller that the
function will throw only the exceptions contained in the exception specification.

For example, a function:
void translate() throw(unknown_word,bad_grammar) { /* ... */ }

Stack Unwinding
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explicitly states that it will only throw exception objects whose types are
unknown_word or bad_grammar, or any type derived from unknown_word or
bad_grammar.

Syntax – Exception Specification

�� throw ( )
type_id_list

��

The type_id_list is a comma-separated list of types. In this list you cannot specify
an incomplete type, a pointer or a reference to an incomplete type, other than a
pointer to void, optionally qualified with const and/or volatile. You cannot define a
type in an exception specification.

A function with no exception specification allows all exceptions. A function with an
exception specification that has an empty type_id_list, throw(), does not allow any
exceptions to be thrown.

An exception specification is not part of a function’s type.

An exception specification may only appear at the end of a function declarator of a
function, pointer to function, reference to function, pointer to member function
declaration, or pointer to member function definition. An exception specification
cannot appear in a typedef declaration. The following declarations demonstrate this:
void f() throw(int);
void (*g)() throw(int);
void h(void i() throw(int));
// typedef int (*j)() throw(int);

The compiler would not allow the last declaration, typedef int (*j)() throw(int).

Suppose that class A is one of the types in the type_id_list of an exception
specification of a function. That function may throw exception objects of class A, or
any class publicly derived from class A. The following example demonstrates this:
class A { };
class B : public A { };
class C { };

void f(int i) throw (A) {
switch (i) {

case 0: throw A();
case 1: throw B();
default: throw C();

}
}

void g(int i) throw (A*) {
A* a = new A();
B* b = new B();
C* c = new C();
switch (i) {

case 0: throw a;
case 1: throw b;
default: throw c;

}
}

Function f() can throw objects of types A or B. If the function tries to throw an
object of type C, the compiler will call unexpected() because type C has not been

Exception Specifications
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specified in the function’s exception specification, nor does it derive publicly from A.
Similarly, function g() cannot throw pointers to objects of type C; the function may
throw pointers of type A or pointers of objects that derive publicly from A.

A function that overloads a virtual function can only throw exceptions specified by
the virtual function. The following example demonstrates this:
class A {

public:
virtual void f() throw (int, char);

};

class B : public A {
public: void f() throw (int) { }

};

/*
class C : public A {

public: void f() { }
};

class D : public A {
public: void f() throw (int, char, double) { }

};
*/

The compiler allows B::f() because the member function may throw only
exceptions of type int. The compiler would not allow C::f() because the member
function may throw any kind of exception. The compiler would not allow D::f()
because the member function can throw more types of exceptions (int, char, and
double) than A::f().

Suppose that you assign or initialize a pointer to function named x with a function or
pointer to function named y. The pointer to function x can only throw exceptions
specified by the exception specifications of y. The following example demonstrates
this:
void (*f)();
void (*g)();
void (*h)() throw (int);

void i() {
f = h;

// h = g;
}

The compiler allows the assignment f = h because f can throw any kind of
exception. The compiler would not allow the assignment h = g because h can only
throw objects of type int, while g can throw any kind of exception.

Implicitly declared special functions (default constructors, copy constructors,
destructors, and copy assignment operators) have exception specifications. An
implicitly declared special function will have in its exception specification the types
declared in the functions’ exception specifications that the special function invokes.
If any function that a special function invokes allows all exceptions, then that special
function allows all exceptions. If all the functions that a special function invokes
allow no exceptions, then that special function will allow no exceptions. The
following example demonstrates this:
class A {

public:
A() throw (int);
A(const A&) throw (float);

Exception Specifications
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xA() throw();
};

class B : public A {
public:

B() throw (char);
B(const A&);
xB() throw();

};

class C : public B { };

The following special functions in the above example have been implicitly declared:
C::C() throw (int, char);
C::C(const C&);
C::xC() throw();

The default constructor of C can throw exceptions of type int or char. The copy
constructor of C can throw any kind of exception. The destructor of C cannot throw
any exceptions.

v “Incomplete Types” on page 71
v “Function Declarations” on page 154
v “Pointers to Functions” on page 173
v “Chapter 15. Special Member Functions” on page 341
v “unexpected()”

Special Exception Handling Functions

Not all thrown errors can be caught and successfully dealt with by a catch
block. In some situations, the best way to handle an exception is to terminate the
program. Two special library functions are implemented in C++ to process
exceptions not properly handled by catch blocks or exceptions thrown outside of a
valid try block. These functions are unexpected() and terminate().

v “unexpected()”
v “terminate()” on page 416

unexpected()

When a function with an exception specification throws an exception that is
not listed in its exception specification, the C++ run time does the following:

1. The unexpected() function is called.

2. The unexpected() function calls the function pointed to by
unexpected_handler. By default, unexpected_handler points to the function
terminate().

You can replace the default value of unexpected_handler with the function
set_unexpected().

Although unexpected() cannot return, it may throw (or rethrow) an exception.
Suppose the exception specification of a function f() has been violated. If
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unexpected() throws an exception allowed by the exception specification of f(),
then the C++ run time will search for another handler at the call of f(). The
following example demonstrates this:
#include <iostream>
using namespace std;

struct E {
const char* message;
E(const char* arg) : message(arg) { }

};

void my_unexpected() {
cout << "Call to my_unexpected" << endl;
throw E("Exception thrown from my_unexpected");

}

void f() throw(E) {
cout << "In function f(), throw const char* object" << endl;
throw("Exception, type const char*, thrown from f()");

}

int main() {
set_unexpected(my_unexpected);
try {

f();
}
catch (E& e) {

cout << "Exception in main(): " << e.message << endl;
}

}

The following is the output of the above example:
In function f(), throw const char* object
Call to my_unexpected
Exception in main(): Exception thrown from my_unexpected

The main() function’s try block calls function f(). Function f() throws an object of
type const char*. However the exception specification of f() allows only objects of
type E to be thrown. The function unexpected() is called. The function
unexpected() calls my_unexpected(). The function my_unexpected() throws an
object of type E. Since unexpected() throws an object allowed by the exception
specification of f(), the handler in the main() function may handle the exception.

If unexpected() did not throw (or rethrow) an object allowed by the exception
specification of f(), then the C++ run time does one of two things:
v If the exception specification of f() included the class std::bad_exception,

unexpected() will throw an object of type std::bad_exception, and the C++ run
time will search for another handler at the call of f().

v If the exception specification of f() did not include the class
std::bad_exception, the function terminate() is called.

v “set_unexpected() and set_terminate()” on page 418

terminate()

In some cases, the exception handling mechanism fails and a call to void
terminate() is made. This terminate() call occurs in any of the following situations:
v The exception handling mechanism cannot find a handler for a thrown exception.

The following are more specific cases of this:

Special Exception Handling Functions
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– During stack unwinding, a destructor throws an exception and that exception
is not handled.

– The expression that is thrown also throws an exception, and that exception is
not handled.

– The constructor or destructor of a non-local static object throws an exception,
and the exception is not handled.

– A function registered with atexit() throws an exception, and the exception is
not handled. The following demonstrates this:
extern "C" printf(char* ...);
#include <exception>
#include <cstdlib>
using namespace std;

void f() {
printf("Function f()\n");
throw "Exception thrown from f()";

}

void g() { printf("Function g()\n"); }
void h() { printf("Function h()\n"); }

void my_terminate() {
printf("Call to my_terminate\n");
abort();

}

int main() {
set_terminate(my_terminate);
atexit(f);
atexit(g);
atexit(h);
printf("In main\n");

}

The following is the output of the above example:
In main
Function h()
Function g()
Function f()
Call to my_terminate

To register a function with atexit(), you pass a parameter to atexit() a pointer
to the function you want to register. At normal program termination, atexit()
calls the functions you have registered with no arguments in reverse order.
The atexit() function is in the <cstdlib> library.

v A throw expression without an operand tries to rethrow an exception, and no
exception is presently being handled.

v A function f() throws an exception that violates its exception specification. The
unexpected() function then throws an exception which violates the exception
specification of f(), and the exception specification of f() did not include the
class std::bad_exception.

v The default value of unexpected_handler is called.

The terminate() function calls the function pointed to by terminate_handler. By
default, terminate_handler points to the function abort(), which exits from the
program. You can replace the default value of terminate_handler with the function
set_terminate().

A terminate function cannot return to its caller, either by using return or by throwing
an exception.

Special Exception Handling Functions
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v “set_unexpected() and set_terminate()”

set_unexpected() and set_terminate()

The function unexpected(), when invoked, calls the function most recently
supplied as an argument to set_unexpected(). If set_unexpected() has not yet
been called, unexpected() calls terminate().

The function terminate(), when invoked, calls the function most recently supplied as
an argument to set_terminate(). If set_terminate() has not yet been called,
terminate() calls abort(), which ends the program.

You can use set_unexpected() and set_terminate() to register functions you define
to be called by unexpected() and terminate(). The functions set_unexpected()
and set_terminate() are included in the standard header files. Each of these
functions has as its return type and its argument type a pointer to function with a
void return type and no arguments. The pointer to function you supply as the
argument becomes the function called by the corresponding special function: the
argument to set_unexpected() becomes the function called by unexpected(), and
the argument to set_terminate() becomes the function called by terminate().

Both set_unexpected() and set_terminate() return a pointer to the function that
was previously called by their respective special functions (unexpected() and
terminate()). By saving the return values, you can restore the original special
functions later so that unexpected() and terminate() will once again call
terminate() and abort().

If you use set_terminate() to register your own function, the function should no
return to its caller but terminate execution of the program.

If you attempt to return from the function called by terminate(), abort() is
called instead and the program ends.

Example of Using the Exception Handling Functions

The following example shows the flow of control and special functions used
in exception handling:
#include <iostream>
#include <exception>
using namespace std;

class X { };
class Y { };
class A { };

// pfv type is pointer to function returning void
typedef void (*pfv)();

void my_terminate() {
cout << "Call to my terminate" << endl;
abort();

}

void my_unexpected() {
cout << "Call to my_unexpected()" << endl;
throw;

}

Special Exception Handling Functions
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void f() throw(X,Y, bad_exception) {
throw A();

}

void g() throw(X,Y) {
throw A();

}

int main()
{

pfv old_term = set_terminate(my_terminate);
pfv old_unex = set_unexpected(my_unexpected);
try {

cout << "In first try block" << endl;
f();

}
catch(X) {

cout << "Caught X" << endl;
}
catch(Y) {

cout << "Caught Y" << endl;
}
catch (bad_exception& e1) {

cout << "Caught bad_exception" << endl;
}
catch (...) {

cout << "Caught some exception" << endl;
}

cout << endl;

try {
cout << "In second try block" << endl;
g();

}
catch(X) {

cout << "Caught X" << endl;
}
catch(Y) {

cout << "Caught Y" << endl;
}
catch (bad_exception& e2) {

cout << "Caught bad_exception" << endl;
}
catch (...) {

cout << "Caught some exception" << endl;
}

}

The following is the output of the above example:
In first try block
Call to my_unexpected()
Caught bad_exception

In second try block
Call to my_unexpected()
Call to my terminate

At run time, this program behaves as follows:

1. The call to set_terminate() assigns to old_term the address of the function last
passed to set_terminate() when set_terminate() was previously called.
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2. The call to set_unexpected() assigns to old_unex the address of the function
last passed to set_unexpected() when set_unexpected() was previously
called.

3. Within the first try block, function f() is called. Because f() throws an
unexpected exception, a call to unexpected() is made. unexpected() in turn
calls my_unexpected(), which prints a message to standard output. The function
my_unexpected() tries to rethrow the exception of type A. Because class A has
not been specified in the exception specification of function f(),
my_unexpected() throws an exception of type bad_exception.

4. Because bad_exception has been specified in the exception specification of
function f(), the handler catch (bad_exception& e1) is able to handle the
exception.

5. Within the second try block, function g() is called. Because g() throws an
unexpected exception, a call to unexpected() is made. The unexpected()
throws an exception of type bad_exception. Because bad_exception has not
been specified in the exception specification of g(), unexpected() calls
terminate(), which calls the function my_terminate().

6. my_terminate() displays a message then calls abort(), which terminates the
program.

Note that the catch blocks following the second try block are not entered, because
the exception was handled by my_unexpected() as an unexpected throw, not as a
valid exception.

v “unexpected()” on page 415
v “terminate()” on page 416
v “set_unexpected() and set_terminate()” on page 418
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Appendix A. C and C++ Compatibility on the z/OS Platform

This appendix pertains to the differences between C and C++ that apply
specifically to the z/OS platform. The contents describe the constructs that are
found in both ISO C and ISO C++, but which are treated differently in the two
languages, and interactions with other products that do not support C++.

v “Constructs Found in Both C++ and C”
v “Interactions with Other Products” on page 424

Constructs Found in Both C++ and C
Because ISO C++ is based on ISO C, the two languages have many constructs in
common. The use of some of these shared constructs differs as described in this
section.

Character Array Initialization
In C++, when you initialize character arrays, a trailing '\0' (zero of type char) is
appended to the string initializer. You cannot initialize a character array with more
initializers than there are array elements.

In C, space for the trailing '\0' can be omitted in this type of initialization.

The following initialization, for instance, is not valid in C++:
char v[3] = "asd"; // not valid in C++, valid in C

because four elements are required. This initialization produces an error because
there is no space for the implied trailing '\0' (zero of type char).

Class and typedef Names
In C++, a class and a typedef cannot both use the same name to refer to a
different type within the same scope (unless the typedef is a synonym for the class
name). In C, a typedef name and a struct tag name declared in the same scope
can have the same name because they have different name spaces. For example:
int main ()
{

typedef double db;
struct db; // error in C++, valid in C

typedef struct st st; // valid C and C++
}

Class and Scope Declarations
In C++, a class declaration introduces the class name into the scope where it is
declared and hides any object, function, or other declaration of that name in an
enclosing scope. In C, an inner scope declaration of a struct name does not hide
an object or function of that name in an outer scope. For example:
double db;
int main ()
{

struct db // hides double object db in C++
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{ char* str; };
int x = sizeof(db); // size of struct in C++

// size of double in C
}

const Object Initialization
In C++, const objects must be initialized. In C, they can be left uninitialized.

Definitions
An object declaration is a definition in C++. In C, it is a declaration (formerly known
as a tentative definition). For example:
int i;

In C++, a global data object must be defined only once. In C, a global data object
can be declared several times without using the extern keyword.

In C++, multiple definitions for a single variable cause an error. A C compilation unit
can contain many identical declarations for a variable.

Definitions within Return or Argument Types
In C++, types may not be defined in return or argument types. C allows such
definitions. For example, the following declarations produce errors in C++, but are
valid declarations in C:
void print(struct X { int i;} x); // error in C++
enum count{one, two, three} counter(); // error in C++

Enumerator Type
An enumerator has the same type as its enumeration in C++. In C, an enumeration
has type int.

Enumeration Type
The assignment to an object of enumeration type with a value that is not of that
enumeration type produces an error in C++. In C, an object of enumeration type
can be assigned values of any integral type.

Function Declarations
In C++, all declarations of a function must match the unique definition of a function.
C has no such restriction.

Functions with an Empty Argument List
Consider the following function declaration:

int f();

In C++, this function declaration means that the function takes no arguments. In C,
it could take any number of arguments, of any type.

Global Constant Linkage
In C++, an object declared const has internal linkage, unless it has previously been
given external linkage. In C, it has external linkage.

Constructs Found in Both C++ and C
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Jump Statements
C++ does not allow you to jump over declarations containing initializations. C does
allow you to use jump statements for this purpose.

Keywords
C++ contains some additional keywords not found in C. C programs that use these
keywords as identifiers are not valid C++ programs:

Table 9. C++ Keywords
asm
bool
catch
class
const_cast
delete
dynamic_cast
explicit

export
false
friend
inline
mutable
namespace
new
operator

private
protected
public
reinterpret_cast
static_cast
template
this
throw

true
try
typeid
typename
using
virtual
wchar_t

main() Recursion
In C++, main() cannot be called recursively and cannot have its address taken. C
allows recursive calls and allows pointers to hold the address of main().

Names of Nested Classes
In C++, the name of a nested class is local to its enclosing class. In C, the name of
the nested structure belongs to the same scope as the name of the outermost
enclosing structure.

Pointers to void
C++ allows void pointers to be assigned only to other void pointers. In C, a pointer
to void can be assigned to a pointer of any other type without an explicit cast.

Prototype Declarations
C++ requires full prototype declarations. C allows nonprototyped functions.

Return without Declared Value
In both C and C++, main() must be declared to return a value of type int. In C++,
if no value is explicitly returned from main() by means of a return statement and if
program execution reaches the end of function main (that is, the program does not
terminate due to a call to exit(), std::terminate(), or a similar function), then the
value 0 is implicitly returned. A return (either explicit or implicit) from all other
functions that are declared to return a value must return a value. In C, a function
that is declared to return a value can return with no value, with unspecified results.

__STDC__ Macro
The predefined macro variable __STDC__ is not defined for C++. It has the integer
value 0 when it is used a #if statement, indicating that the C++ language is not a
proper superset of C, and that the compiler does not conform to C. In C, __STDC__
has the integer value 1.

typedefs in Class Declarations
In C++, a typedef name may not be redefined in a class declaration after being
used in the declaration. C allows such a declaration. For example:
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int main ()
{

typedef double db;
struct st
{

db x;
double db; // error in C++, valid in C

};
}

Interactions with Other Products
You cannot write a C++ program that includes interfaces to Cross-System Product
(CSP). However, you can write a C program to access CSP and call the C program
from a C++ program.

In general, application libraries that provide C interfaces may not support
applications written in C++ if their header files do not conform to C++ syntax.
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Appendix B. Common Usage C Language Level for the z/OS
Platform

The X/Open Portability Guide (XPG) Issue 3 describes a C language
definition referred to as Common Usage C. This language definition is roughly
equivalent to K&R C, and differs from the ISO C language definition. It is based on
various C implementations that predate the ISO standard.

Common Usage C is supported with the LANGLVL(COMMONC) compiler option or the
#pragma langlvl(commonc) directive. These cause the compiler to accept C source
code containing Common Usage C constructs.

Many of the Common Usage C constructs are already supported by #pragma
langlvl(extended). The following language elements are different from those
accepted by #pragma langlvl(extended).

v Standard integral promotions preserve sign. For example, unsigned char or
unsigned short are promoted to unsigned int. This is functionally equivalent to
specifying the UPCONV compiler option.

v Trigraphs are not processed in string or character literals. For example, consider
the following source line:

??=define STR "??= not processed"

The above line gets preprocessed to:
#define STR "??= not processed"

v The sizeof operator is permitted on bitfields. The result is the size of an
unsigned int (4).

v Bitfields other than type int are permitted. The compiler issues a warning and
changes the type to unsigned int.

v Macro parameters found within single or double quotation marks are expanded.
For example, consider the following source lines:

#define STR(AAA) "String is: AAA"
#define ST STR(BBB)

The above lines are preprocessed to:
#define STR(AAA) "String is: AAA"
#define ST "String is: BBB"

v Macros can be redefined without first being undefined (that is, without an
intervening #undef). An informational message is issued saying that the second
definition is used.

v The empty comment (/**/) in a function-like macro is equivalent to the ISO
token concatenation operator ##.

The LANGLVL compiler option is described in the z/OS C/C++ User’s Guide. The
#pragma langlvl is described in “langlvl” on page 237.
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Appendix C. Conforming to POSIX 1003.1

The implementation resulting from the combination of z/OS UNIX and the
z/OS Language Environment supports the ISO/IEC 9945-1:1990/IEEE POSIX
1003.1-1990 standard. POSIX stands for Portable Operating System Interface.

See the OpenEdition POSIX.1 Conformance Document for POSIX on MVS/ESA:
IEEE Standard 1003.1-1990, GC23-3011, for a description of how the z/OS UNIX
implementation meets the criteria.
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Appendix D. Supporting ISO Standards

This appendix describes changes made to the z/OS C/C++ Compiler and
Library to support the American National Standard for Information Systems -
Programming Language C standard. It also describes implementation-defined
behavior of the z/OS C/C++ compiler that is not defined by ISO.

The following sections describe how the z/OS C compiler defines some of the
implementation-specific behavior from the ISO C Standard. In-depth usage
information is provided in z/OS C/C++ User’s Guide and z/OS C/C++ Programming
Guide.
v “Identifiers”
v “Characters” on page 430
v “String Conversion” on page 430
v “Integers” on page 431
v “Floating-Point” on page 431
v “Arrays and Pointers” on page 432
v “Registers” on page 432
v “Structures, Unions, Enumerations, Bit Fields” on page 432
v “Declarators” on page 433
v “Statements” on page 433
v “Preprocessing Directives” on page 433
v “Library Functions” on page 433
v “Error Handling” on page 434
v “Signals” on page 435
v “Translation Limits” on page 435
v “Streams, Records, and Files” on page 436
v “Memory Management” on page 437
v “Environment” on page 437
v “Localization” on page 438
v “Time” on page 438

Identifiers
The number of significant characters in an identifier with no external linkage:
v 1024

The number of significant characters in an identifier with external linkage:
v 1024 with the compile-time option LONGNAME specified
v 8 otherwise

The C++ compiler truncates external identifiers without C++ linkage after 8
characters if the NOLONGNAME compiler option or #pragma is in effect.

Case sensitivity of external identifiers:
v The linkage editor accepts all external names up to 8 characters, and may not be

case sensitive. The binder accepts all external names up to 1024 characters, and
is optionally case sensitive. The linkage editor accepts all external names up to 8
characters, and may not be case sensitive, depending on whether you use the
NOLONGNAME compiler option or #pragma. When using the z/OS C compiler with the
NOLONGNAME option, all external names are truncated to 8 characters. As an aid to
portability, identifiers that differ only in case after truncation are flagged as an
error.
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Characters
Source and execution characters which are not specified by the ISO standard:
v The caret (|) character in ASCII (bitwise exclusive OR symbol) or the equivalent

not (¬) character in EBCDIC.
v The vertical broken line (¦) character in ASCII which may be represented by the

vertical line (|) character on EBCDIC systems.

Shift states used for the encoding of multibyte characters:
v The shift states are indicated with the SHIFTOUT (hex value \x0E) characters and

SHIFTIN (hex value \x0F).

The number of bits that represent a character:
v 8 bits

The mapping of members of the source character set (characters and strings) to the
execution character set:
v The same code page is used for the source and execution character set.

The value of an integer character constant that contains a character/escape
sequence not represented in the basic execution character set:
v A warning is issued for an unknown character/escape sequence and the char is

assigned the character following the back slash.

The value of a wide character constant that contains a character/escape sequence
not represented in the extended execution character set:
v A warning is issued for the unknown character/escape sequence and the wchar_t

is assigned the wide character following the back slash.

The value of an integer character constant that contains more than one character:
v The lowest four bytes represent the character constant.

The value of a wide character constant that contains more than one multibyte
character:
v The lowest four bytes of the multibyte characters are converted to represent the

wide character constant.

Equivalent type of char: signed char, unsigned char, or user-defined:
v The default for char is unsigned

Is each sequence of white-space characters (excluding the new-line) retained or
replaced by one space character?
v Any spaces or comments in your source program will be interpreted as one

space.

String Conversion
Additional implementation-defined sequence forms that can be accepted by
strtod(), strtol() and strtoul() functions in other than the C locale:
v None
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Integers
Table 10. Integers

Type Amount of
Storage

Range (in limits.h)

signed short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

signed int 4 bytes -2,147,483,647 minus 1 to 2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

signed long 4 bytes -2,147,483,647 minus 1 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

signed long long 8 bytes -9,223,372,036,854,775,807 minus 1 to
9,223,372,036,854,775,807

unsigned long long 8 bytes 0 to 18,446,744,073,709,551,615

The result of converting an integer to a signed char :
v The lowest 1 byte of the integer is used to represent the char.

The result of converting an integer to a shorter signed integer:
v The lowest 2 bytes of the integer are used to represent the short int.

The result of converting an unsigned integer to a signed integer of equal length, if
the value cannot be represented:
v The bit pattern is preserved and the sign bit has no significance.

The result of bitwise operations (|, &, |) on signed int:
v The representation is treated as a bit pattern and 2’s complement arithmetic is

performed.

The sign of the remainder of integer division if either operand is negative:
v The remainder is negative if exactly one operand is negative.

The result of a right shift of a negative-valued signed integral type:
v The result is sign extended and the sign is propagated.

Floating-Point
Table 11. Floating Point

Type Amount of
Storage

Range (approximate)

IBM S/390 Hexadecimal
Format

IEEE Binary Format

float 4 bytes 5.5x10-79 to 7.2x1075 1.2x10-38 to 3.4x1038

double 8 bytes 5.5x10-79 to 7.2x1075 2.2x10-308 to 1.8x10308

long double 16 bytes 5.5x10-79 to 7.2x1075 3.4x10-4932 to 1.2x104932

The following is the direction of truncation (or rounding) when you convert an
integer number to an IBM S/390 hexadecimal floating-point number, or to an IEEE
binary floating-point number:

v IBM S/390 hexadecimal format:
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When the floating-point cannot exactly represent the original value, the value is
truncated.

When a floating-point number is converted to a narrower floating-point number,
the floating-point number is truncated.

v IEEE binary format:

The rounding direction is determined by the ROUND compiler option. The ROUND
option only affects the rounding of floating-point values that the z/OS C/C++
compiler can evaluate at compile time. It has no effect on rounding at run time.

Arrays and Pointers
The type of size_t:
v unsigned int

The type of ptrdiff_t:
v int

The result of casting a pointer to an integer:
v The bit patterns are preserved.

The result of casting an integer to a pointer:
v The bit patterns are preserved.

Registers
The effect of the register storage class specifier on the storage of objects in
registers:
v The register storage class indicates to the compiler that a variable in a block

scope data definition or a parameter declaration is heavily used (such as a loop
control variable). It is equivalent to auto, except that the compiler might, if
possible, place the variable into a machine register for faster access.

Structures, Unions, Enumerations, Bit Fields
The result when a member of a union object is accessed using a member of a
different type:
v The result is undefined.

The alignment/padding of structure members:
v If the structure is not packed, then padding is added to align the structure

members on their natural boundaries. If the structure is packed, no padding is
added.

The padding at the end of structure/union:
v Padding is added to end the structure on its natural boundary. The alignment of

the struct or union is that of its strictest member.

The type of an int bit field (signed int, unsigned int, user defined):
v The default is unsigned.

The order of allocation of bit fields within an int :
v Bit fields are allocated from low memory to high memory. For example,

0x12345678 would be stored with byte 0 containing 0x12, and byte 3 containing
0x78.
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The rule for bit fields crossing a storage unit boundary:
v Bit fields can cross storage unit boundaries.

The integral type that represents the values of an enumeration type:
v Enumerations can have the type char, short, or long and be either signed or

unsigned depending on their smallest and largest values.

Declarators
The maximum number of declarators (pointer, array, function) that can modify an
arithmetic, structure, or union type:
v The only constraint is the availability of system resources.

Statements
The maximum number of case values in a switch statement:
v Because the case values must be integers and cannot be duplicated, the limit is

INT_MAX.

Preprocessing Directives
Does the value of a single-character constant in a constant expression that controls
conditional inclusion match the value of the character constant in the execution
character set?
v Yes

Can such a constant have a negative value?
v Yes

The method of searching include source files (< >):
v See z/OS C/C++ User’s Guide.

Is the search for quoted source file names supported (″...″)?
v User include files can be specified in double quotes. See z/OS C/C++ User’s

Guide.

The mapping between the name specified in the include directive and the external
source file name:
v See z/OS C/C++ User’s Guide.

The behavior of each pragma directive:
v See “Pragma Directives (#pragma)” on page 219.

The definitions of __DATE__ and __TIME__ when date and time of translation is not
available:
v For z/OS C/C++, the date and time of translation are always available.

Library Functions
The definition of NULL macro:
v NULL is defined to be a ((void *)0).

The format of diagnostic printed by the assert macro, and the termination behavior
(abort behavior):
v When assert is executed, if the expression is false, the diagnostic message

written by the assert macro has the format:
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Assertion failed: expression, file filename, line line-number

Set of characters tested by the isxxxx functions:
v To create a table of the characters set up by the ctype functions use the program

in the following example.

CCNRABG
/* this example prints out ctest characters */

#include <stdio.h>
#include <ctype.h>

int main(void)
{

int ch;

for (ch = 0; ch <= 0xff; ch++)
{
printf("%#04X ", ch);
printf("%3s ", isalnum(ch) ? "AN" : " ");
printf("%2s ", isalpha(ch) ? "A" : " ");
printf("%2s", iscntrl(ch) ? "C" : " ");
printf("%2s", isdigit(ch) ? "D" : " ");
printf("%2s", isgraph(ch) ? "G" : " ");
printf("%2s", islower(ch) ? "L" : " ");
printf("%c", isprint(ch) ? ch : ' ');
printf("%3s", ispunct(ch) ? "PU" : " ");
printf("%2s", isspace(ch) ? "S" : " ");
printf("%3s", isprint(ch) ? "PR" : " ");
printf("%2s", isupper(ch) ? "U" : " ");
printf("%2s", isxdigit(ch) ? "X" : " ");

putchar('\n');
}

}

The result of calling fmod() function with the second argument zero (return zero,
domain error):
v fmod() returns a 0.

Error Handling
The format of the message generated by the perror() and strerror() functions:
v See z/OS Language Environment Run-Time Messages for the messages emitted

for perror() and strerror().

Note: errno is not emitted with the message.

How diagnostic messages are recognized:
v Error handling is both a compile-time and run-time behavior. Refer to z/OS

C/C++ Messages Guide and z/OS Language Environment Run-Time Messages
for the lists of z/OS C/C++ messages provided.

The different classes of messages:
v The message summary of a listing uses message types, return codes, and

numeric severity levels, which are shown in the table below.

Return
Code

Message Type—C++ Message Type—C Numeric Severity
Level—C

0 Informational (I) Informational 00
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Return
Code

Message Type—C++ Message Type—C Numeric Severity
Level—C

4 Warning (W) Warning 10

8 Error (E) n/a n/a

12 Severe (S) Error 30

16 Unrecoverable (U) Severe Error >30

How the level of diagnostics can be controlled:
v Use the compile-time option FLAG to control the level of diagnostics. The C

compiler option CHECKOUT and the C ++ compiler option INFO provide
programming style diagnostics to aid you in determining possible programming
errors.

Signals
The set of signals for the signal() function:
v See z/OS C/C++ Programming Guide.

The parameters and the usage of each signal recognized by the signal() function:
v See z/OS C/C++ Programming Guide.

The default handling and the handling at program start-up for each signal
recognized by signal() function:
v SIG_DFL is the default signal.

The signal blocking performed if the equivalent of signal(sig, SIG_DFL) is not
executed at the beginning of signal handler:
v See z/OS C/C++ Programming Guide.

Is the default handling reset if a SIGKILL is received by a signal handler?
v Whenever you enter the signal handler, SIG_DFL becomes the default.

Translation Limits
System-determined means that the limit is determined by your system resources.

Table 12. Translation Limits
Nesting levels of:
v Compound statements
v Iteration control
v Selection control
v Conditional inclusion
v Parenthesized declarators
v Parenthesized expression

v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v System-determined

Number of pointer, array and function declarators modifying an arithmetic a
structure, a union, and incomplete type declaration

v System-determined

Significant initial characters in:
v Internal identifiers
v Macro names
v C external identifiers (without LONGNAME)
v C external identifiers (with LONGNAME)
v C++ external identifiers

v 1024
v 1024
v 8
v 1024
v 1024
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Table 12. Translation Limits (continued)
Number of:
v External identifiers in a translation unit
v Identifiers with block scope in one block
v Macro identifiers simultaneously declared in a translation unit
v Parameters in one function definition
v Arguments in a function call
v Parameters in a macro definition
v Parameters in a macro invocation
v Characters in a logical source line
v Characters in a string literal
v Bytes in an object
v Nested include files
v Enumeration constants in an enumeration
v Levels in nested structure or union

v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v 32760 under MVS
v 32K minus 1
v LONG_MAX (See 1)
v SHRT_MAX
v System-determined
v System-determined

Note:

1 LONG_MAX is the limit for automatic variables only. For all other variables,
the limit is 16 Megabytes.

Streams, Records, and Files
Does the last line of a text stream require a terminating new-line character?
v No, the last new-line character is defaulted.

Do space characters, that are written out to a text stream immediately before a
new-line character, appear when read?
v White-space characters written to fixed record format text streams before a

new-line do not appear when read. However, white-space characters written to
variable record format text streams before a new-line character appear when
read.

The number of null characters that can be appended to the end of the binary
stream:
v No limit

Where is the file position indicator of an append-mode stream initially positioned?
v The file position indicator is positioned at the end of the file.

Does a write on a text stream cause the associated file to be truncated?
v Yes

Does a file of zero length exist?
v Yes

The rules for composing a valid file name:
v See z/OS C/C++ Programming Guide.

Can the same file be simultaneously opened multiple times?
v For reading, the file can be opened multiple times; for writing/appending, the file

can be opened once. Once a file is opened for reading, it cannot be opened for
writing.

The effect of the remove() function on an open file:
v remove() fails.
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The effect of the rename() function on file to a name that exists prior to the function
call:
v The rename() fails.

Are temporary files removed if the program terminates abnormally?
v Yes

The effect of calling the tmpnam() function more than TMP_MAX times:
v tmpnam() fails and returns NULL.

The output of %p conversion in the fprintf() function:
v It is equivalent to %X.

The input of %p conversion in the fscanf() function:
v The value is treated as an integer.

The interpretation of a - character that is neither the first nor the last in the scanlist
for %[ conversion in the fscanf() function:
v The sequence of characters on either side of the - are used as delimiters. For

example, %[a-f] will read in characters between 'a' and 'f'.

The value of errno on failure of fgetpos() and ftell() functions:
v This depends on the failure. For a list of the messages associated with errno,

see z/OS Language Environment Run-Time Messages.

Memory Management
The behavior of calloc(), malloc() and realloc() functions if the size requested
is zero:
v Nothing is performed for calloc() and malloc(); realloc() frees the storage.

Environment
The arguments of main function:
v You can pass arguments to main through argv and argc.

What happens with open files when the abort() function is called?
v The files are closed.

What is returned to the host environment when the abort() function is called?
v The return code of 2000 is returned.

The form of successful termination when the exit function is called with argument
zero or EXIT_SUCCESS:
v All files are closed, all storage is released and the return code of 0 is returned.

The form of unsuccessful termination when the exit function is called with argument
EXIT_FAILURE:
v All files are closed, all storage is released and the return code of EXIT_FAILURE is

returned.

What status is returned by the exit function if the argument is other than zero,
EXIT_FAILURE and EXIT_SUCCESS?
v The return code 4096 is returned.

The set of environmental names:

ISO standards support
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v There are no environmental names.

The method of altering the environment list obtained by a call to the getenv()
function:
v See how to execute a command in z/OS C/C++ Run-Time Library Reference.

The format and a mode of execution of a string on a call to the system() function:
v See z/OS C/C++ Run-Time Library Reference.

Localization
The environment specified by the "" locale on a setlocale() call:
v EDC$SAAC

The supported locales:
v See z/OS C/C++ Programming Guide.

Time
The local time zone and Daylight Saving Time:
v This is specified in the locale.

The era for the clock() function:
v The era starts when the program is started by either a call from the operating

system, or a call to system(). Under TSO, the era starts when you log on to the
system. To measure the time spent in a program, call the clock() function at the
start of the program, and subtract its return value from the value returned by
subsequent calls to clock().

ISO standards support
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Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.
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Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

Lab Director
IBM Canada Ltd.
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM
has not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2001. All rights reserved.

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.
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General-use programming interfaces allow the customer to write application
software that obtains the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help you
debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

400
AD/Cycle
AIX
AIX/6000
AS/400
BookManager
C Set ++
C++/MVS
C/370
CICS
CICS/ESA
DB2 Universal Database
DFSMS/MVS
DRDA
GDDM
Hiperspace
IBM
IMS
IMS/ESA

Language Environment
MVS/DFP
MVS/ESA
Network Station
Object Connection
Open Class
OpenEdition
OS/2
OS/390
OS/400
Operating System/2
Operating System/400
PowerPC 403
PowerPC 601
PowerPC 603
PowerPC 604
Presentation Manager
QMF

RACF
S/390
RS/6000
SAA
SOM
SOMobjects
SP
System/370
System/390
System Object Model
Systems Application Architecture
TeamConnection
VisualAge
VM/ESA
VSE/ESA
WebSphere
Workplace Shell
z/OS

Lotus, Lotus Notes, and Domino are trademarks or registered trademarks of the
Lotus Development Corporation in the United States, or other countries, or both.

Tivoli Management Environment, TME 10, and Tivoli Module Designer are
trademarks of Tivoli Systems Inc. in the United States, or other countries, or both.

Encina and DCE Encina Lightweight Client are trademarks of Transarc Corporation
in the United States, or other countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in
the United States and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and/or
other countries.

ActionMedia, Itanium, LANDesk, MMX, Pentium and ProShare are trademarks or
registered trademarks of Intel Corporation in the United States, or other countries,
or both.
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C-bus is a registered trademark of Corollary, Inc.

PC Direct is a registered trademark of Ziff Communications Company and is used
by IBM Corporation under license

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
The following standards are supported:

v The C language is consistent with the International Standard C (ANSI/ISO-IEC
9899–1990 [1992]). This standard has officially replaced American National
Standard for Information Systems-Programming Language C (X3.159–1989) and
is technically equivalent to the ANSI C standard. VisualAge C++ supports the
changes adopted into the C Standard by ISO/IEC 9899:1990/Amendment 1:1994.

v The C++ language is consistent with the International Standard for Information
Systems-Programming Language C++ (ISO/IEC 14882:1998).
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Index

Special Characters
[ ] (array subscript operator) 106
? : (conditional operators) 137
/= (compound assignment operator) 135
*= (compound assignment operator) 135
&= (compound assignment operator) 135
+= (compound assignment operator) 135
-- (decrement operator) 114
== (equal to operator) 129
++ (increment operator) 114
&& (logical AND operator) 132
!= (not equal to operator) 129
% (remainder) 126
:: (scope resolution operator) 102
+ (addition operator) 126
& (address operator) 116
& (bitwise AND operator) 130
, (comma operator) 140
\ continuation character 29, 196
/ (division operator) 126
. (dot operator) 107
\ escape character 13
* (indirection operator) 117
! (logical negation operator) 115
* (multiplication operator) 125
= (simple assignment operator) 134
- (subtraction operator) 127
- (unary minus operator) 115
+ (unary plus operator) 115
__callback keyword 20
__cdecl 20, 75, 173
-> (arrow operator) 107
__packed 20
# preprocessor directive character 196
# preprocessor operator 200
˜ (bitwise negation operator) 116
|= (compound assignment operator) 135
| (bitwise exclusive OR operator) 130
| (caret), locale 12
_Export 20, 77
>= (greater than or equal to operator) 128
> (greater than operator) 128
>>= (compound assignment operator) 135
>> (right-shift operator) 127
<= (less than or equal to operator) 128
< (less than operator) 128
<<= (compound assignment operator) 135
<< (left-shift operator) 127
_Packed 20
| (bitwise inclusive OR operator) 131
| (vertical bar), locale 12
|| (logical OR operator) 132

Numerics
370 macro 211

A
aborting functions 417
abstract classes 336, 339
access

base classes 321
friends 314
members 308
multiple 329
private 308, 321
protected 308
protected members 320
public 308, 321
specifiers 308, 321
virtual function 338

access specifiers 293, 308
accessibility 308, 329
addition operator (+) 126
address operator (&) 116
aggregates 344
ALIAS compile option 241
alignment

changing with #pragma pack 249
alignment rules

nested structures 59
structures 58
unions 64

allocation expressions 119
allocation functions 123
alternative representations

operators and punctuators 20
ambiguities

base classes 328, 329
resolving 178
virtual functions 337

AND operator, bitwise (&) 130
AND operator, logical (&&) 132
ANSI flagging 237
ANSI macro 205
ARCH macro 205
argc (argument count) 163

example 163
restrictions 166

arguments
command-line 165
default 169
evaluation 171
main function 163
of catch blocks 407
passing 164

restrictions 165
passing by reference 167
passing by value 167

argv (argument vector) 163
example 163
restrictions 165

arithmetic conversions 149
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arrays
array-to-pointer conversions 147
class members 294
declaration 86
description 86
initializing 88
ISO support 432
subscripting operator 106

ASCII character codes 13
asm 20
associativity of operators 95
atexit function 416
auto storage class specifier 35

B
base classes

abstract 339
access 321
ambiguities 328, 329
description 317
direct 327
indirect 327
initialization 346
multiple 327
multiple access 329
pointers to 319, 320
virtual 328, 332

base list 317, 327
best viable function 280
BFP macro 205
binary expressions 124
binary operators 124
binding virtual functions 333
bit fields 55

ISO support 432
bitwise negation operator (˜) 116
block statement 179
block visibility 2
BOOL macro 205
boolean conversions 145
boolean literals 31
boolean variables 46
boundaries, data 80
brackets [ ] 106
break statement 190

C
candidate functions 269, 280
case label 182
cast expressions 135
catch blocks 401, 403

argument matching 407
order of catching 408

CHAR_SIGNED macro 205
char type specifier 45
CHAR_UNSIGNED macro 205
character

data types 45
character literals 28

chars pragma 224
CHARSET_LIB macro 205
checkout pragma 225
class key 283
class member access operators

description 107
class member lists 293
class members 293

ambiguities 331
initialization 346

class names
scope 287

class object 34
class templates

declaration and definition 376
distinction from template class 374
explicit specialization 393
member functions 377
static data members 377

classes 286
abstract 339
class templates 374
declarations 283
derivation 317
friends 310
incomplete declarations 288
inheritance 315
local 290
member access 308
member functions 295
member lists 293
member scope 297
nested 288, 312
objects 34
overview 283
packing

using #pragma pack 249
scope 287
static members 303
this pointer 300
using declaration 322
virtual 333
virtual base 328
virtual member functions 333

COBOL linkage 239
CODESET macro 206
comma expressions 140
comma operator 140
comment pragma 225
comments 16
COMMONC macro 206
compatible types 137
COMPATMATH macro 206
compile options

overriding defaults 247
specifying 247

COMPILER_VER macro 206
compound statement 179
conditional compilation directives 213

elif preprocessor directive 215
else preprocessor directive 216
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conditional compilation directives (continued)
endif preprocessor directive 217
examples 217
if preprocessor directive 215
ifdef preprocessor directive 215
ifndef preprocessor directive 216

conditional expression (? :) 137
const_cast 110
const qualifier 69
constant

member functions 296
constant expressions 101
constant initializers 293
constants

fixed-point decimal 27
constructors 342

converting 360
copy 362
default 343
exception handling 411
initialization

explicit 344
initializer list 159
nontrivial 343, 351
overview 341
trivial 343, 351

continuation character 29, 196
continue statement 190
conversion

constructors 360
function 361

conversions
arithmetic 149
array-to-pointer 147
boolean 145
cast 135
derived class 332
derived-to- base 147
explicit keyword 150
floating- point 146
function arguments 148
function-to-pointer 147
integral 145
lvalue-to- rvalue 145
pointer 146
pointer to member 148
qualification 148
reference 147
standard 144
user-defined 358
void pointer 147

converting constructor 150, 360
convlit pragma 226
copy assignment operators 363
copy constructors 362
covariant virtual functions 335
CPLUSPLUS macro 205
CPPUNWIND macro 206
csect pragma 227

D
data members

description 294
scope 297
static 304

DATE macro 204
dbx xxv
deallocation expressions 122
deallocation functions 123
debug tool xxii
debugging

dbx xxv
debug tool xxii

decimal data type operators 118
decimal integer literals 24
declarations

class
description 283
incomplete 288
syntax 283

description 33
friend 310, 314
function

resolving ambiguities 178
overview 33
pointers to members 298
resolving ambiguous statements 178
unsubscripted arrays 87

declarators
description 73
restrictions 433

decrement operator (−−) 114
default clause 182, 183
default constructors 343
default label 183
define pragma 229
define preprocessor directive 196
defined, preprocessor operator 215
defined unary operator 215
definitions

description 33
macro 196
member function 295
packed union 61

delete operator 122
dependent names 397
dereferencing operator 117
derived class objects

construction order 349
derived classes

base list 317
catch block 408
description 317
pointers to 319, 320

destructors 350
exception handling 411
overview 341
pseudo 107, 352

diagnostic messages 434
digitsof operator 118
digraph characters 16
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DIGRAPHS macro 206
direct base class 327
direct binding 93
disjoint pragma 229
division operator (/) 126
DLL macro 206
do statement 187
dot operator 107
double type specifier 47
dynamic binding 333
dynamic_cast 111

E
EBCDIC character codes 13
elaborated type specifier 287
elif preprocessor directive 215
ellipsis

in function declaration 155
in function definition 161

ellipsis conversion sequences 281
else clause 180
else preprocessor directive 216
enclosing class 312
end of string 29
endif preprocessor directive 217
enum

constants 231
keyword 65
pragma 230

ENUM_OPT macro 206
enumeration

data type 65
ISO support 432
tag 65

enumerator 66
environment

implementation-defined behavior 437
pragma 231

equal to operator (==) 129
error preprocessor directive 202
errors

ISO support 434
message classes 434

escape character \ 13
escape sequence 13, 430

alarm \a 13
backslash \\ 13
backspace \b 13
carriage return \r 13
double quotation mark \″ 13
form feed \f 13
horizontal tab \t 13
new-line \n 13
question mark \? 13
single quotation mark \’ 13
vertical tab \v 13

examples
ccnraa3 191
ccnraa4 191
ccnraa6 193

examples (continued)
ccnraa7 186
ccnraa8 199
ccnraa9 199
ccnraaf 35
ccnraag 36
ccnraam 51
ccnraan 68
ccnraao 90
ccnraaq 85
ccnraas 57
ccnraau 161
ccnraax 167
ccnraay 168
ccnrab1 184
ccnrabc 217
ccnrabd 218
ccnrabe 234
ccnrabg 434
ccnx02j 7
ccnx02k 30
ccnx06a 168
ccnx06b 169
ccnx08a 212
ccnx08b 213
ccnx08c 213
ccnx10c 286
ccnx10d 286
ccnx11a 297
ccnx11c 300
ccnx11h 307
ccnx11i 310
ccnx11j 311
ccnx12b 271
ccnx13a 345
ccnx14a 318
ccnx14b 318
ccnx14c 319
ccnx14g 330

exception handling 401
argument matching 407
catch blocks 403

arguments 407
constructors 411
destructors 411
example, C++ 418
exception objects 401
function try blocks 401
handlers 401, 403
order of catching 408
rethrowing exceptions 410
set_terminate 418
set_unexpected 418
special functions 415
stack unwinding 411
terminate function 416
throw expressions 403, 409
try blocks 401
try exceptions 404
unexpected function 415

446 C/C++ Language Reference



exceptions
declaration 403
function try block handlers 404
specification 159, 412

exclusive OR operator, bitwise (|) 130
explicit

instantiation, templates 389
keyword 150
specializations, templates 390, 391
type conversions 135

exponent 26
export pragma 232
expressions

allocation 119
assignment 134
cast 135
comma 140
conditional 137
deallocation 122
description 95
integer constant 101
new initializer 120
parenthesized 101
pointer to member 133
primary 101
resolving ambiguous statements 178
statement 178
throw 137, 409
unary 113

EXT macro 206
EXTENDED macro 206
extern keyword

with function pointers 173
extern storage class specifier 37
external

names
length of 22
long name support 23
mapping 22

static 39

F
FETCHABLE preprocessor directive 239
field, bit 55
file inclusion 202
FILE macro 204
file scope data declarations

unsubscripted arrays 87
files, implementation-defined behavior 436
FILETAG macro 207
filetag pragma 232
fixed-point decimal

constants 27
data type 48

float type specifier 47, 65
floating-point

range 431
storage 431

floating-point conversions 146
floating-point literals 25

floating-point promotions 143
for statement 188
FORTRAN linkage 239
free store 353

delete operator 122
new operator 119

friends
access 314
description 310
member functions 295
nested classes 312
relationships with classes when templates are

involved 378
scope 312
virtual functions 336

function-like macro 197
FUNCTION macro 207
function templates

explicit specialization 393
function try blocks 159, 401

handlers 404
functions

allocation 123
arguments 104, 154

conversions 148
C++ enhancements 153
calling 164
calls 104
class templates 377
conversion function 361
deallocation 123
declaration 153, 154

argument names 156
C++ 155
examples 157
exception specification 154
multiple 155

default arguments 169
evaluation 171
restrictions 170

definition 153, 158
constructor initializer list 159
declarator 158
examples 161
exception specification 159
return type 158
scope 158
storage class specifier 158
type specifier 158

exception specification 412
friend 310
function templates 379
function-to-pointer conversions 147
inline 174, 295
main 162
optimization 247
overloading 269
overview 153
parameters 104, 154, 164
pointers to 173
prototyping 154
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functions (continued)
return statements 192
return type 159, 171
return types 172
return values 171
specifiers 92, 174
template function

template argument deduction 380
virtual 296, 333, 337

G
GOFF macro 207
goto statement 193
greater than operator (>) 128
greater than or equal to operator (>=) 128

H
handlers 403
hexadecimal integer literals 25
HHW_370 macro 207
hidden names 102, 285, 287
HOS_MVS macro 207, 210

I
IBMC macro 207
IBMCPP macro 208
identifiers 18

case sensitivity 19
external names in z/OS C/C++ 22
ISO support 429
limits in names 23
name space 8
special characters 19

if preprocessor directive 215
if statement 180
ifdef preprocessor directive 215
ifndef preprocessor directive 216
IGNERRNO macro 208
implementation-defined behavior 429
implementation dependency

allocation of floating-point types 47
allocation of integral types 49, 50
bit field length 55
class member allocation 294
sign of char 46

implementation pragma 233
implicit conversion sequences 280
implicit conversions 143
implicit instantiation

templates 387
implicit type conversions 143
include preprocessor directive 202
inclusive OR operator, bitwise (|) 131
incomplete class declarations 288
increment operator (++) 114
indentation of code 196
indirect base class 327
indirection operator (*) 117

info pragma 233
inheritance

graph 328, 329
multiple 327
overview 315

INITAUTO macro 208
INITAUTO_W macro 208
initialization

base classes 346
class members 346
static data members 306

initializer lists 346
initializers 79
inline

functions
description 174, 295
specifiers 92

pragma 234
input record 254
integer

constant expressions 101
conversions 145, 146
data types 49, 50
ISO support 431
literals 24

integral conversions 145
integral promotions 143
ISO, implementation-defined behavior 429
ISO standards 429
isolated_call pragma 236

K
keywords 20

__cdecl 75
_Export 77
description 20
inline 174
language extension 20
template 367, 399
try 401
typename 398
z/OS-specific 20

L
label statement 177
langlvl pragma 237

long long support 206, 209
LARGE_FILES macro 208
leaves pragma for function calls 238
left-shift operator (<<) 127
less than operator (<) 128
less than or equal to operator (<=) 128
LIBANSI macro 209
library functions 433
LIBREL macro 209
limits

floating-point 431
integer 431

LINE macro 204
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line preprocessor directive 218
linkage 5

external 6
in function definition 159
internal 5
none 7
with function pointers 173

linkage pragma for interlanguage calls 239
linkage specifications 7
linking to non-C++ programs 7
literals 23

boolean 31
character 28
floating-point 25
integer 24

data types 24
decimal 24
hexadecimal 25
octal 25

string 29
local

classes 290
type names 291

LOCALE macro 209
localization 438
logical AND operator (&&) 132
logical negation operator (!) 115
logical OR operator (||) 132
long double type specifier 47
long long

conversion 146
LONG_LONG macro 209
long long type specifier 49
long name support 23
long type specifier 49
LONGNAME compiler option 23
LONGNAME macro 209
longname pragma 241
lvalue-to-rvalue conversions 145
lvalues 99

M
macro

definition 196, 197
invocation 197

main function 162
arguments 163
example 163

map pragma 242
margins pragma 243
member access 308

changing member access 325
member declarations 294
member functions

constant 296
definition 295
description 295
special 297
static 306
this pointer 300, 338

member functions (continued)
volatile 296

member lists 284, 293
member of a structure 53
members

access
public, private, and protected 308

arrays 294
class member access operators 107
data 294
inherited 317
pointers to 133, 298
protected 320
scope 297
static 289, 303
virtual functions 296

memory
data mapping 80
management 437

MI_ macro 209
minus, unary operator (−) 115
modifiable lvalues 99
modulo operator (%) 126
multibyte characters

ISO support 430
overview 430

multicharacter literal 28
multiple

access 329
inheritance 327

multiplication operator (*) 125
mutable storage class specifier 40
MVS (Multiple Virtual System)

macro 210
variable names 22

N
name binding 397
name hiding 4

ambiguities 330
name mangling

function 76
pragma 245
scheme 246

name spaces of identifiers 8
names

class 287
hidden 102, 285, 287
local type 291

namespaces 261
alias 261, 262
declaring 261
defining 261
explicit access 267
extending 262
friends 265
member definitions 265
overloading 263
unnamed 264
using declaration 267
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namespaces (continued)
using directive 266

naming
classes 8
external names 22
long names 22

narrow character literal 28
nested classes

friend scope 312
scope 288

nesting level limits 435
new initializer expressions 120
new operator

default arguments 170
description 119
placement syntax 120
set_new_handler function 121

noinline pragma 234, 245
NOLONGNAME compiler option 23
nolongname pragma 241
nomargins pragma 243
nosequence pragma 254
not equal to operator (!=) 129
null character \0 29
NULL pointer 83
null pointer constants 147
null preprocessor directive 219
null statement 194
number sign (#)

preprocessor directive character 196
preprocessor operator 200

O
object-like macro 196
OBJECT_MODEL_COMPAT macro 210
OBJECT_MODEL_IBM macro 210
object_model pragma 246
objects

base class 328
class

declarations 284
description 34

octal integer literals 25
one’s complement operator ˜ 116
operator functions 271
operators

[] (array subscripting) 106
? : (conditional) 137
-- (decrement) 114
== (equal to) 129
++ (increment) 114
&& (logical AND) 132
!= (not equal to) 129
.* (pointer to member) 133
% (remainder) 126
:: (scope resolution) 102
− (unary minus) 115
+ (addition) 126
& (address) 116
& (bitwise AND) 130

operators (continued)
, (comma) 140
/ (division) 126
. (dot) 107
* (indirection) 117
! (logical negation) 115
* (multiplication) 125
= (simple assignment) 134
- (subtraction) 127
->* (pointer to member) 133
-> (arrow) 107
| (bitwise exclusive OR) 130
>= (greater than or equal to) 128
> (greater than) 128
>> (right- shift) 127
<= (less than or equal to) 128
< (less than) 128
<< (left- shift) 127
| (bitwise inclusive OR) 131
|| (logical OR) 132
alternative representations 21
assignment 134

copy assignment 363
associativity 95
binary 124
bitwise negation operator (˜) 116
compound assignment 135
const_cast 110
delete 122, 355
digitsof 118
dynamic_cast 111
equality 129
expressions 103
new 119, 353
operators 103
overloading 271

binary 274
unary 273

pointer to member 133, 298
precedence 95

examples 98
precisionof 118
preprocessor

# 200
## 201

reinterpret_cast 109
relational 128
scope resolution 318, 330, 336
sizeof 117
static_cast 108
typeid 139
unary 113
unary plus operator (+) 115

optimization
controlling, using option_override pragma 247
granularity 247
inlining 234

OPTIMIZE macro 210
option_override pragma 247
options pragma 247
OR operator, logical (||) 132
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OS linkage 239
overload resolution 280

ambiguities 333
resolving addresses of overloaded functions 282

overloading
delete operator 355
description 269
function templates 385
functions 269

declaration 156
restrictions 270

new operator 353
operators 271

assignment 274
binary 274
class member access 278
decrement 278
function call 276
increment 278
subscripting 277
unary 273

overriding virtual functions 337

P
pack pragma 249
packed

assignments and comparisons 134
structures 57, 165
unions 61, 64, 165

Packed qualifier 74
page pragma 250
pagesize pragma 251
parenthesized expressions 101
pass by reference 167
pass by value 167
PL/I linkage 239
placement syntax 120
plus, unary operator (+) 115
pointer arithmetic 84
pointer conversions

ambiguities 332
pointer to member

declarations 298
operators 133

pointer to member conversions 148
pointers

arithmetic 84
arrays 432
conversions 146
description 81
restrictions 83
this 300
to functions 173
to members 133, 298

polymorphic classes 334
portability issues 429
POSIX 427
postfix expressions 103
postfix operators 103

pound sign (#)
preprocessor directive character 196
preprocessor operator 200

pragmas
chars 224
checkout 225
comment 225
convlit 226
csect 227
define 229
definition 219
disjoint 229
enum 230
environment 231
export 232
filetag 232
implementation 233
info 233
inline 234
IPA considerations 224
isolated_call 236
langlvl 237
leaves 238
linkage 239
longname 241
map 242
margins 243
namemangling 245
noinline 234, 245
nolongname 241
nomargins 243
nosequence 254
object_model 246
option_override 247
options 247
pack 249
page 250
pagesize 251
preprocessor directive 219
priority 251
reachable 252
report 252
restrictions on z/OS #pragma directives 222
runopts 253
sequence 254
skip 255
strings 256
subtitle 256
target 256
title 257
variable 257
wsizeof 258

precedence of operators 95
precisionof operator 118
predefined macros

370 211
ANSI 205
ARCH 205
BFP 205
BOOL 205
CHAR_SIGNED 205
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predefined macros (continued)
CHAR_UNSIGNED 205
CHARSET_LIB 205
CODESET 206
COMMONC 206
COMPATMATH 206
COMPILER_VER 206
CPLUSPLUS 205
CPPUNWIND 206
DATE 204
DIGRAPHS 206
DLL 206
ENUM_OPT 206
EXT 206
EXTENDED 206
FILE 204
FILETAG 207
FUNCTION 207
GOFF 207
HHW_370 207
HOS_MVS 207
IBMC 207
IBMCPP 208
IGNERRNO 208
INITAUTO 208
INITAUTO_W 208
LARGE_FILES 208
LIBANSI 209
LIBREL 209
LINE 204
LOCALE 209
LONG_LONG 209
LONGNAME 209
MI_ 209
MVS 210
OBJECT_MODEL_COMPAT 210
OBJECT_MODEL_IBM 210
OPTIMIZE 210
RTTI_DYNAMIC_CAST 210
SAA 210
SAAL2 210
STDC 204
STRING_CODE_SET 211
TARGET_LIB 211
TEMPINC 211
THW370 211
TIME 205
TIMESTAMP 211
TOSMVS 212
TUNE 212
XPLINK 212

preprocessing 195
preprocessor directive character 196
preprocessor directives

conditional compilation 213
ISO support 433
pragma 220

preprocessor operator
# 200
## 201

primary expressions 101

priority pragma 251
private 308, 321
private keyword 308
program entry point 162
promotions, integral and floating-point 143
protected 308
protected keyword 308
protected member access 320
prototyping 154
pseudo-destructors 107
public 308, 321
public derivation 322
public keyword 308
punctuators 11

alternative representations 21
pure specifier 293, 296, 336, 339
pure virtual functions 339

Q
qualification conversions 148
qualified

type name 289
qualified names 102
qualifiers

_Packed 74
const 69
volatile 69

R
reachable pragma for function calls 252
record

margins 244
sequence numbers 254

reentrant variables 257
reference conversions 147
references

as return types 172
conversions 147
description 92
direct binding 93
initialization 93

register storage class specifier 41
registers

ISO support 432
reinterpret_cast 109
remainder operator (%) 126
report

pragma 252
return statement 172, 192

value 192
return type

reference as 172
size_t 117

right-shift operator (>>) 127
RTTI_DYNAMIC_CAST macro 210
run-time options 253
runopts pragma 253
rvalues 99
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S
SAA macro 210
SAAL2 macro 210
scope

block 1
class 3
class names 287
description 1
friend 312
function 2
function prototype 2
global 2
global namespace 2
local 1
local classes 290
member 297
nested classes 288

scope resolution operator
ambiguous base classes 330
description 102
inheritance 318
virtual functions 336

sequence pragma 254
set_new_handler function 121
set_terminate function 418
set_unexpected function 415, 418
shift operators << and >> 127
shift states 430
short type specifier 49
signal

function 435
signed char type specifier 45
signed int 49
signed long 49
signed long long 49
simple assignment operator (=) 134
simple type specifiers 44

char 45
wchar_t 45

size_t 117
sizeof operator 117
skip pragma 255
source

program
margins 244
variable names 22

source character set 11
space character 196
special functions

used in exception handling 415
special member functions 297
specifiers

access 308, 321
class 283
inline 92, 174
pure 296
storage class 34
virtual 92

splice preprocessor directive ## 201
stack unwinding 411
standard conversion sequences 281

standard conversions 143
standard type conversions 144
statements 177

block 179
break 190
continue 190
do 187
expressions 178
for 188
goto 193
if 180
labels 177
null 194
resolving ambiguities 178
restriction 433
return 172, 192
switch 182
while 186

static
data members 304
initialization of data members 306
member functions 306
members 289, 303
storage class specifier 42

static binding 333
static_cast 108
STDC macro 204
storage class specifiers 34, 158

auto 35
extern 37
mutable 40
register 41
static 42

storage of variables 81
streams 436
string

conversion 430
STRING_CODE_SET macro 211
string literals 29
stringize preprocessor directive # 200
strings pragma 256
struct type specifier 52
structures 286

ISO support 432
packing

using _Packed qualifier 57
using #pragma pack 249

subscript declarator
in arrays 87

subscripts 106
subtitle pragma 256
subtraction operator (−) 127
supporting ISO 429
switch statement 182

T
TARGET_LIB macro 211
target pragma 256
TEMPINC macro 211
template arguments 370
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template arguments (continued)
deduction 380
deduction, non- type 384
deduction, type 383
non- type 371
template 373
type 371

template keyword 399
templates

arguments
non-type 371
type 371

class
declaration and definition 376
distinction from template class 374
explicit specialization 393
member functions 377
static data members 377

declaration 367
dependent names 397
explicit specializations 390, 392

class members 392
declaration 390
definition and declaration 391
function templates 393

function
argument deduction 384
overloading 385
partial ordering 386

function templates 379
type template argument deduction 383

instantiation 367, 387, 390
explicit 389
implicit 387

name binding 397
parameters 368

default arguments 370
non-type 369
template 369
type 368

partial specialization 395
matching 397
parameter and argument lists 396

point of definition 398
point of instantiation 398
pragma define 229
pragma implementation 233
relationship between classes and their friends 378
scope 392
specialization 367, 387, 390

temporary objects 357, 407
terminate function 401, 403, 408, 411, 415, 416

set_terminate 418
this pointer 300, 338
throw expressions 137, 401, 409

argument matching 407
rethrowing exceptions 410
within nested try blocks 403

THW370 macro 211
time 438
TIME macro 205

TIMESTAMP macro 211
title pragma 257
TMP_MAX macro 437
tmpnam() library function 437
tokens 11, 195

alternative representations for operators and
punctuators 21

TOSMVS macro 212
translation limits 435
translation unit 2
trigraph sequences 15
try blocks 401

nested 403
try keyword 401
TUNE macro 212
type

data mapping 80
type declarations

fixed-point decimal 48
integer 50

type names
local 291

type qualifiers
_Packed 74
const 69
volatile 69

type specifier 44
(long) double 47
enumeration 65
float 47
int 49
long 49
long long 49
short 49
unsigned 49

typedef specifier
class declaration 291
description 43
linkage 241
local type names 291
pointers to members 299
qualified type name 289

typeid operator 139
typename keyword 398
types

conversions 135

U
unary expressions 113
unary minus operator (−) 115
unary operators 113
unary plus operator (+) 115
undef preprocessor directive 199
underscores in identifiers 22
unexpected function 401, 415, 416

set_unexpected 418
Unicode 14
union specifier 60
unions

alignment 64
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unions (continued)
ISO support 432
packing

using _Packed qualifier 61
using #pragma pack 249

unnamed namespaces 264
unsigned char type specifier 45
unsigned int type specifier 49
unsigned long long type specifier 49
unsigned long type specifier 49
unsigned short type specifier 49
unsigned type specifier 49
unsubscripted arrays

description 87
user-defined conversion sequences 281
user-defined conversions 358
using declarations 267, 322

ambiguities 331
changing member access 325
overloading member functions 324

using directive 266
USL xxi

V
variable pragma 257
variables

integer 50
names 22
storage of 81

virtual
base classes 328, 332
function specifier 92
functions

access 338
ambiguous calls to 337
description 333
overriding 337
pure 339

member functions 296
visibility 4

block 2
class members 308

void 50
argument type 161
in function definition 161
pointer 147

volatile
member functions 296
qualifier 69

W
wchar_t 28
wchar_t type specifier 45
while statement 186
white space 16, 195, 196, 200
wide character literals 28
wide characters

ISO support 430
wsizeof pragma 258

X
XPLINK macro 212
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